EARTH SCIENCE – UNIT 7 – CHAPTER 15 NOTES

ATMOSPHERE

15.1 Earth's Atmosphere

- 2 major gases: oxygen (21%) and nitrogen (78%)

- 3 trace gases: argon, carbon dioxide, and water vapor
- 7 super-trace gases: neon, helium, methane, xenon, krypton, hydrogen, and ozone

- The 3 trace gases and the 7 super-trace gases add up to 1% of the atmosphere.

SHOW PIE CHART DIAGRAM OF ATMOSPHERIC GASES

15.1 Layers of the Atmosphere

- 5. EXOSPHERE =
 - upper-most layer of the atmosphere
 - borders "outer space"
 - There is no clear boundary between the top of the exosphere and the beginning of space.
 - There are very few molecules in the exosphere.
- 4. THERMOSPHERE =
 - contains a layer of electrically charged particles (also called the ionosphere)
 - In the daytime, these particles interfere with radio transmission.
 - At night, these particles do not interfere with radio transmission.
 - Therefore, radio signals are "stronger" and go farther at night.

3. MESOSPHERE =

- the middle layer of the atmosphere
- 2. STRATOSPHERE =
 - contains the ozone layer (which protects us from the sun's ultraviolet radiation) contains the jet streams
- 1. TROPOSPHERE =
 - the lowest layer of the atmosphere
 - contains 75% of all atmospheric gases
 - contains weather, clouds, smog, dust, ice (snow), liquid water (rain)
- 15.1 Pressure and Temperature
- HOT AIR: molecules are able to spread apart
 - low density
 - low air pressure
 - hot air always rises!

SHOW DIAGRAM OF PARTICLES THAT ARE FOUND IN HOT AIR

- COLD AIR: molecules are packed tightly together

- high density
- high air pressure
- cold air always sinks!

SHOW DIAGRAM OF PARTICLES THAT ARE FOUND IN COLD AIR

- 15.1 Pressure, Temperature, and the Atmosphere
- Air pressure is highest in the troposphere, and becomes less and less as you move up in the air.
- The exosphere has the lowest air pressure because it contains so few gas particles.
- As you move up in the troposphere, the temperature decreases until you reach the stratosphere.
- As you move up in the stratosphere, the temperature increases until you reach the mesosphere. - The stratosphere contains ozone, which absorbs sunlight, making it get hotter.
- As you move up in the mesosphere, the temperature decreases until you reach the thermosphere.
- As you move up in the thermosphere and exosphere, the temperature increases.
- The thermosphere contains electrically-charged particles, making it get hotter.
- Therefore, the divisions of the atmosphere into its 5 layers are primarily based on temperature variations.

15.1 The Ozone Layer: CFC's and The Ozone Hole

- SILENT READING
- 1. What is the cause of CFC's? (Where do they come from?)
- 2. What is the effect of CFC's? (How do they impact the atmosphere?)

15.2 Energy From the Sun

- reflection = when the light bounces off of an object (in this case, the Earth)
- absorption = when the light does not bounce off of an object and is taken into it
- thin atmosphere: most of the sun's energy is reflected back into space (bounces off Earth) EX: Mercury or Mars (weather is warm/hot in the daytime and freezing cold at night)
- thick atmosphere: most of the sun's energy is absorbed or trapped
 - EX: Venus (weather is very hot in the daytime and very hot at night)
- medium atmosphere: some of the energy is reflected and some is absorbed/trapped
 - EX: Earth (moderate temperatures during the daytime and at night)
- **SHOW DIAGRAMS OF THIN, THICK, AND MEDIUM ATMOSPHERES**

15.2 Radiation

- the transfer of energy through electromagnetic waves
- does NOT require direct contact with the heat source (you don't touch it)
- EX: tanning on a beach
- EX: sitting in front of a fireplace or campfire
- Energy is ALWAYS transferred from the warmer object to the cooler object!
- It is NEVER transferred from the cooler object to the warmer object.
- Some radiation is reflected back into space and some is absorbed.

SHOW DIAGRAM OF ABSORPTION AND REFLECTION

- 1. 15%: Energy is absorbed by the clouds and atmosphere.
- 2. 50%: Energy is absorbed by Earth's surface.
- 3. 5%: Energy is reflected off of Earth's surface.
- 4. 30%: Energy is reflected off of the clouds and atmosphere.

- 15.2 Conduction
- the transfer of energy when molecules bump into each other
- requires a direct contact with the heat sources (the 2 objects must touch each other)
- Energy is ALWAYS transferred from the warmer object to the cooler object!
- It is NEVER transferred from the cooler object to the warmer object.
- Warmer objects have fast-moving molecules (more energy).
- Cooler objects have slow moving molecules (less energy).
- EX: ice melting into a glass of soda (the soda is the warmer object)
- EX: walking barefoot on hot pavement (the pavement is the warmer object)
- EX: a baby touching a hot stove (the stove top is the warmer object)

15.2 Convection

- the transfer of energy when molecules by the flow of a heated material (liquid or gas)
- warm air: molecules spread out
 - takes up more volume
 - is less dense
 - has a lower air pressure
- cold air: molecules are close together
 - takes up less volume
 - is more dense
 - has a higher air pressure
- Hot air rises and cool air sinks due to DENSITY differences.
- Hot air is less dense, so it rises. Cool air is more dense, so it sinks.
- This produces a circular movement of air called a convection current.
- ****DRAW DIAGRAM OF A CONVECTION CURRENT****
- EX: The attic is the warmest part of a house. The basement is the coolest.
- EX: Convection currents in Earth's upper mantle cause divergent or convergent boundaries.

15.3 Movement of Air

- wind =
 - the movement of air from high pressure to low pressure
 - caused by the uneven heating of Earth's surface
 - uneven heating is caused by Earth's tilt of 23.5°
 - winds are named based on where they come FROM
 - EX: a westerly wind blows from west to east
 - EX: an easterly wind blows from east to west
- cold air =
 - originates at the poles
 - sinks because it has a high density and a high air pressure
- warm air =
 - originates at the equator
 - rises because it has a low density and a low air pressure
- Coriolis Effect =
 - the effect of Earth's rotation on air and water
 - northern hemisphere = clockwise movement of water and air
 - southern hemisphere = counter-clockwise movement of water and air

15.3 Surface Winds

- global wind patterns caused by the uneven heating of Earth's surface

- creates convection currents in Earth's atmosphere

- Polar Easterlies:	east \rightarrow west	90°N (north pole) – 60°N
- Prevailing Westerlies:	west \rightarrow east	$60^{\circ}N - 30^{\circ}N$
- Trade Winds:	east \rightarrow west	30°N – equator
- Doldrums:	no movement	equator
- Trade Winds:	east \rightarrow west	equator – 30°S
- Prevailing Westerlies:	west \rightarrow east	$30^{\circ}S - 60^{\circ}S$
- Polar Easterlies:	east \rightarrow west	$60^{\circ}\text{S} - 90^{\circ}\text{S}$ (south pole)

SHOW DIAGRAM OF EARTH'S SURFACE WINDS

- jet streams =

- narrow belts of strong winds in the stratosphere that blow primarily from west to east at the border between the different surface winds
- located at 60°N, 30°N, 30°S, and 60°S
- planes save fuel when flying east
- planes try to avoid jet streams when flying west

15.3 Daily Winds

- 1. Sea Breeze =
 - In daytime, sunlight heats the land more than the water.
 - The air over the land is heated by conduction and rises.
 - Cool, more dense air over the water sinks and moves over the land.
 - This is called a sea breeze because the wind comes FROM the water TO the land.
 - EX: The wind blows from the ocean back onto the beach.
 - THE WIND BLOWS FROM THE WATER TO THE LAND (DAYTIME ONLY).
- 2. Land Breeze =
 - At night, the land cools more quickly than the water.
 - The air over the land becomes cooler than the air over the water.
 - The cooler, more dense air over the land sinks and moves over the water.
 - The warm air over the water rises and moves over the land.
 - This is called a land breeze because the wind comes FROM the land TO the water.
 - EX: The wind blows from the beach back into the ocean.
 - THE WIND BLOWS FROM THE LAND TO THE WATER (NIGHT-TIME ONLY).

SHOW DIAGRAMS OF A SEA BREEZE AND A LAND BREEZE