

This picture of a protist (Paramecium) was taken with a different light microscope.

This picture of leaf cells was taken with a light microscope.

This picture of a protist (Paramecium) was taken with a scanning electron microscope.

Smooth endoplasmic

reticulum

Rough endoplasmic reticulum

Lysosome

Centriol

Peroxisome

Microtubule

Intermediate filament

Microfilament

CYTOSKELETON:

This picture of a protist (Paramecium) was taken with a transmission electron microscope.

Nucleoir Ribosomes Plasma membran Bacterial Cell wal chromosome Capsul A thin section through the bacterium Bacillus coagulans A typical rod-shaped lagella bacterium (TEM)

This is the basic structure of a prokaryotic (bacterial) cell.

[
Organelle	Structure	Function	Plant? Animal?
Nucleus	Chromatin, Chromosomes	Contains the DNA and regulates cell activities	Plant Animal
Nuclear Envelope	Phospholipid Bilayer	Contains the nucleus and has pores to let materials out	Plant Animal
Nucleolus	Dark region within the nucleus	Creates ribosomes	Plant Animal
Ribosome	Small spheres in the cytoplasm or on the Rough ER	Creates proteins	Plant Animal

The protein synthesis pathway includes the nucleus, nuclear envelope, nucleolus, and ribosomes.

This is the basic structure of an animal cell.

Mitochondrion

The protein synthesis pathway primarily involves the nucleus and the ribosomes.

Proteins are created on ribosomes that are in the cytoplasm or on the rough ER.

The endo-membrane system includes the rough and smooth endoplasmic reticulum, transport vesicles, Golgi apparatus, and cell membrane.

The cell membrane is mostly made of phospholipids and membrane proteins.

Transport vesicles move chemicals around the cell.

The Golgi apparatus is like the "post office" of the cell. It sorts everything out.

The cell membrane is called a "fluid-mosaic" model. MOSAIC means that it is made up of many different items and FLUID means that they can move around.

The endo-membrane system involves a lot of different organelles.

Hydrophobic tails Compression have domes to: Phospholipids are the primary structural component of the cell membrane.

C=0 CH₂ CH

Symbol

Copyright @ 2009 Pearson Education, Inc.

The membrane proteins are usually much larger than the phospholipids. Some membrane proteins transmit messages and others transport molecules into or out of the cell.

This protist (Paramecium) has a contractile vacuole that squirts out excess water.

Stroma

Inner and outer membranes

Granum

The chloroplast has a lot of internal thylakoid membranes to maximize

surface area for absorbing sunlight and making glucose.

Intermembrane space

Chloroplast

Organelle	Structure	Function	Plant? Animal?
Mitochondrion	Double membrane- bound sac with a highly folded inner membrane	Production of ATP (energy)	Plant Animal
Chloroplast	Double membrane- bound sac with flattened sacs inside	Production of glucose during photosynthesis	Plant

The energy transformation pathway includes the mitochondrion and the chloroplast.

Organelle	Structure	Function	Plant? Animal?
Cytoplasm	Fluid inside a cell	Contains dissolved nutrients, ions, and other chemicals	Plant Animal
Cytoskeleton	Dissolved structural proteins in the cytoplasm	Maintains the cell's shape and structure	Plant Animal
Cell Wall	Made of cellulose or other water-insoluble polysaccharides	Protects the cell, maintains it's shape and structure, and lets cells stick together	Plant
Extracellular Matrix	Structural proteins located on the outside of the cell membrane	Allows cells to stick together even though they do not have a cell wall	Animal
Cilia	Hair-like structures made of contractile proteins on the cell membrane	Moves substances across the surface of the cell	Animal
Flagellum	Thread-like structure made of contractile proteins on the cell membrane	Allows the cell to "swim"	Animal

The structure, support, and movement pathway includes the cytoplasm, cytoskeleton, cell wall, extracellular matrix, cilia, and flagellum.

The extracellular matrix is like glue that helps animal cells stick together.

complete with their own DNA and ribosomes!

The cytoskeleton is made up of microfilaments (thinner protein strands) and microtubules (thicker protein strands).

A plant cell's cell wall is a thick protective covering on the outside of the cell membrane. The cell wall is made out of cellulose.

Cilia are short "hairs" on the outside of cells that beat back and forth for movement.

