PROPERTY OF:

BIOLOGY – UNIT 4 – CHAPTER 12 NOTES

DNA

Evidence of DNA

- Frederick Griffith: Transformation of Bacteria experiment
- Alred Hershey & Marth Chase: Bacteriophage experiment

Structure of DNA

- deoxyribonucleic acid
- 2 "complementary" strands that form a double helix (spiral)
- made up of 4 nucleotides: A, T, C, G
 - -A = adenine
 - -T = thymine
 - C = cytosine
 - G = guanine
- 3 parts to each nucleotide:
 - 1. sugar (called deoxyribose)
 - 2. phosphate group (abbreviated as a P with a circle around it)
 - 3. nitrogenous base (A, T, C, and G)
- the sugars and phosphates alternate to form a "backbone"
- the nitrogenous bases face inward
- complementary nitrogenous bases are held together by weak hydrogen bonds (H-bonds)
- Chargaff's Rules for base-pairing: A and T bind together, G and C bind together (they fit together using a lock and key fit)
- 5' end of the DNA = phosphate group
- 3' end of the DNA = sugar group

EXAMPLE OF A COMPLEMENTARY STRAND OF DNA:

5'	P P	S	P F	P S	P P	PS 3'	
	I	I	I	I	I	I	
	Т	С	G	А	G	Т	
	:	:	:	:	:	:	
	А	G	С	Т	С	А	
	I	I	I	I	I	I	
	3' SP	S	P F	P S	P P	PB]	P 5'

DNA Replication

- GOAL: to produce an identical copy of the DNA LOCATION: nucleus
- Semi-Conservative Replication = Each of the original strands serves as a template for making a new complementary strand. Each daughter molecule contains one of the original parent strands as well as one new daughter strand.
- Helicase is the enzyme that melts (cuts) the H-bonds between the strands of DNA. This produces the "replication fork".
- The replication fork is the fork-like opening between the two strands.
- DNA polymerase is the enzyme that adds the complementary nucleotides (bases) one at a time. This follows Chargaff's base=pairing rules (A with T, C with G).
- DNA is <u>ONLY</u> built from 5' \rightarrow 3'. This means it <u>ONLY</u> be "read" from 3' \rightarrow 5'.
- The leading strand is made all in one piece. The lagging strand is made in fragments.
- Ligase is the enzyme that connects the fragments of the lagging strand. They are joined together with covalent bonds.

Mutations

- A mutation is any change or mistake in the DNA.
- 1. deletion mutation = nucleotides are deleted
 - EX: GGTACTCAACGT becomes
 - GGTAACGT (the ACTC sequence was deleted)
- 2. duplication mutation = extra nucleotides are added
 - EX: GGTACTCAACGT becomes
 - GGTACGTACTCAACGT (the GTAC sequence was duplicated)
 - 3. inversion mutation = a sequence of nucleotides is flipped
 - EX: GGTACTCAACGT becomes
 - GGTACTGCAACT (the CAACG sequence was inverted to GCAAC)
- 4. translocation mutation = a sequence of nucleotides is moved to a different location
 - EX: GGTACTCAACGT becomes GGTACGACTCAT (the ACG near the end was moved near the middle)

PROPERTY OF:

BIOLOGY - UNIT 4 - CHAPTER 13 NOTES

RNA AND PROTEIN SYNTHESIS

Structure of RNA

- ribonucleic acid
- made of 1 strand of nucleic acids
- made up of 4 nucleotides: A, U, C, G (U = uracil)
- 3 parts to each nucleotide:
 - 1. sugar (called ribose)
 - 2. phosphate group (abbreviated as a P with a circle around it)
 - 3. nitrogenous base (A, U, C, and G)
- the sugars and phosphates alternate to form a "backbone"
- RNA is built off of a DNA template. (This process is called transcription.)
- Chargoff's Rules for base-pairing between DNA and RNA:
 - an A in DNA becomes a U in RNA
 - a G in DNA becomes a C in RNA - a T in DNA becomes an A in RNA - a C in DNA becomes a G in RNA

EXAMPLE OF DNA FORMING A COMPLEMENTARY STRAND OF mRNA:

5' P	S	PS	PS	P S H	P S	PS 3'	mRNA
		I	I	I	I	I	
	U	С	G	А	G	U	
	:	:	:	:	:	:	
	А	G	С	Т	С	А	
		I	I	I	I	I	
3'	' S	P S	PS	P B H	P S	РР	5' DNA

Transcription

- GOAL: to produce a copy of mRNA that is complementary to the strand of DNA LOCATION: nucleus
- RNA polymerase is the enzyme that has two functions in transcription:
 - melts (cuts) the H-bonds in the DNA to free up the strands 1.
 - 2. adds the complementary nucleotides (bases) one at a time
 - This follows Chargoff's base=pairing rules (A \rightarrow U, T \rightarrow A, G \rightarrow C, C \rightarrow G).
- RNA is <u>ONLY</u> built from 5' \rightarrow 3'. The DNA can <u>ONLY</u> be "read" from 3' \rightarrow 5'.

Post-Transcription Processing

- Three things happen to the mRNA after transcription, but before translation:
 - 5' protective cap (protects the "front" of the mRNA from enzymatic breakdown) 1.
 - 2. 3' poly-A tail (protects the "end" of the mRNA from enzymatic breakdown)
 - 3. The introns are removed, leaving behind just the exons. (mRNA sequences that do not need to be converted into proteins are removed) HINT: Introns go IN the trash. Exons are EXpressed.

Three Types of RNA

- 1. mRNA = messenger RNA
 - used by a ribosome to convert a DNA sequence into a protein (amino acid sequence)
- 2. tRNA = transfer RNA used to bring the amino acids to the ribosomes
- 3. rRNA = ribosomal RNA found in a ribosome (makes up the physical structure of a ribosome)

Translation (Protein Synthesis)

- GOAL: to produce a protein based on a sequence of mRNA LOCATION: ribosomes
- 1. Large and small subunits of a ribosome join together. The strand of mRNA is sandwiched in between them.
- 2. The first 3 letters (bases) of the mRNA are "read" by the ribosome. NOTE: Every three bases is called a CODON.
- 3. The appropriate tRNA brings the correct amino acid according to the genetic code chart. The 3 bases at the bottom of the tRNA must be complementary to the codon. These 3 bases at the bottom of the tRNA is called an ANTI-CODON. The codon and anti-codon must make a lock and key fit, according to Chargoff's Rules (A with U and C with G).
- 4. Translation begins with the start codon (AUG). Translation ends with the stop codon (UAA, UAG, or UGA).
- 5. Translation produces the primary structure of a protein. The protein must then be folded to produce the secondary, tertiary, and quaternary structures.

Diagram of Translation

Alanine	Serine	Serine	Valine	\leftarrow amino acids
\	\	١	١	
tRNA	tRNA	tRNA	tRNA	← tRNA molecules
CGC	U C G	A G U	CAU	← anti-codons
: : :	: : :	: : :	: : :	← hydrogen bonds
G C G	A G C	U C A	GUA	← codons
mRNA	mRNA	mRNA	mRNA	\leftarrow mRNA molecules

DNA and mRNA Mutations

- A mutation is any change or mistake in the DNA.
- 1. point mutation = nucleotides are replaced by other nucleotides
 - EX: GGTACTCAACGT becomes
 - GGTACTCACCGT (an A became a C)
 - 2. frame-shift mutation = nucleotides are either added or deleted
 - EX: GGTACTCAACGT becomes
 - GGTACTGCAACGT (a G was added near the middle)
 - EX: GGTACTCAACGT becomes
 - GGTCTCAACGT (an A was deleted near the beginning)
- Frame-shift mutations are generally much more harmful because they change the "reading frame" for the ribosome. A point mutation typically only changes 1 amino acid. A frame-shift mutation typically changes all of the amino acids that are after the addition or the deletion.