

pGLO Bacterial Transformation

Student presentation for use with the pGLO Bacterial Transformation Kit

Why genetically modify organisms?

- Modified animal models for research
- Cancer, obesity, heart disease, etc.

 Modified mosquitoes to fight disease

- Disease/drought/pest resistance.
- Increased nutrition

 Drug production like insulin, hormones, vaccines, and anti-cancer drugs.

Brief history of insulin

- 1922 Canadian researchers isolate insulin, cure diabetics using bovine insulin, and win the Nobel Prize in 1923.
 Previously, diabetes had been a virtual death sentence – there was no treatment.
- 1978 scientists at Genentech produce human insulin using genetically engineered E. coli (recombinant DNA, or rDNA).
- 1982 Humulin approved by the FDA.

The protein products of biotech

	Used to treat	Made in	Price per gram
Gold	N/A	N/A	\$40
Insulin	Diabetes	E. coli	\$60
Human Growth Hormone	Growth disorders	E. coli	\$227,000
Granulocyte Colony Stimulating Factor	Cancers	E. coli	\$1,357,000

1. Identify a gene for a protein.

- 1. Identify a gene for a protein.
- 2. Put the gene into bacteria.

- 1. Identify a gene for a protein.
- 2. Put the gene into bacteria.
- 3. Grow lots of the bacteria.

- 1. Identify a gene for a protein.
- 2. Put the gene into bacteria.
- 3. Grow lots of the bacteria.
- 4. The bacteria transcribe and translate the gene mini protein factories!

- 1. Identify a gene for a protein.
- 2. Put the gene into bacteria.
- 3. Grow lots of the bacteria.
- 4. The bacteria transcribe and translate the gene mini protein factories!

- 1. Identify a gene for a protein.
- 2. Put the gene into bacteria.
- 3. Grow lots of the bacteria.
- 4. The bacteria transcribe and translate the gene mini protein factories!
- 5. Purify the protein.

How do you get genes into bacteria?

- 1. Make a plasmid with your gene.
- 2. Do bacterial transformation. This is what you'll do in this activity.

Genetic engineering using plasmids

- Bacteria often have plasmids circular loops of DNA
- Bacteria can also take in new plasmids.

Genetic engineering using plasmids

 Scientists can modify or engineer plasmids for specific purposes.

Green fluorescent protein

Under visible light

Under ultraviolet (UV) light

The jellyfish

Aequorea Victoria

has a gene for green
fluorescent protein
which glows green
under UV light.

pGLO plasmid

 The pGLO plasmid is engineered to have the GFP gene from Aequorea victoria.

Bacterial Membrane

Add plasmid

Add plasmid

Add transformation solution (CaCl₂)

Heat Shock

Heat Shock

explorer.bio-rad.com

Heat Shock

explorer.bio-rad.com

Recovery on ice, 2 min

Add LB broth, allow gene expression, 10 min

Add LB broth, allow gene expression, 10 min

- Transformed bacteria (with the plasmid) will make betalactamase , which breaks down ampicillin. This enables them to grow on ampicillin plates
- Bacteria without the plasmid (NOT transformed) cannot grow on plates with ampicillin.

LB Broth

- LB (Lysogeny broth or Luria Bertani) broth is like chicken noodle soup for bacteria. It has all the nutrients bacteria need to grow:
 - Carbohydrates
 - Amino acids
 - Nucleotides
 - Salts
 - Vitamins

Transformation summary

1.	CaCl ₂ transformation solution	Shields negative charge on DNA.
2.	Pre-heat shock incubation on ice	Slows fluid plasma membrane for greater shock.
3.	Heat shock	Increases permeability of cell membranes.
4.	Post-heat shock incubation on ice	Restores cell membrane.
5.	Incubation at room temperature with LB broth	Allows beta-lactamase expression so bacteria can grow on plates with ampicillin.
6.	Spread on LB/amp plates	Selects for transformed bacteria and allows formation of colonies.

Label tubes

You have tubes with 250 µl transformation solution.

- Label one +pGLO and the other -pGLO.
- 2. Add your initials.
- 3. Place into foam rack and on ice.

Pick colonies

- 4. Using a sterile loop pick 1–2 large E. coli colonies.
- 5. Add to the **+pGLO** tube. Spin the loop to disperse the bacteria. No clumps!
- 6. Using a **new** loop, at 1–2 colonies to **-pGLO** tube.
- 7. Place tubes into foam rack and on ice.

Add plasmid DNA

- 8. Add 10 μl (1 loop full) pGLO plasmid to **+pGLO** tube. **DO NOT ADD TO -pGLO** tube.
- 9. Place tubes into foam rack and on ice for 10 min.

Label plates

- 10. While your tubes are on ice, label the *bottom* of your plates.
- 11. Add your group ID or initials.

Heat shock

Get your timers ready!

- 12. Heat shock tubes at 42°C for exactly 50 sec.
- **13.** *Immediately* return tubes to ice for 2 min.
- 14. Add 250 µl LB broth to both tubes.
- 15. Leave at room temperature for 10 min.

Meanwhile...

Plasmid genes are expressed

Beta-lactamase

Beta-lactamase makes *E. coli* resistant to ampicillin

- Transformed bacteria (with the plasmid) will make betalactamase □ , which breaks down ampicillin □□. This enables them to grow on ampicillin plates
- Bacteria without the plasmid (NOT transformed) cannot grow on plates with ampicillin.

AraC

AraC Controls Expression of GFP

Arabinose (a sugar) works like a switch.

- Without arabinose, the switch is OFF. AraC blocks RNA polymerase , and the GFP gene is not transcribed.
- With arabinose , the switch is ON. AraC changes shape and RNA transcribes the GFP gene.

Green Fluorescent Protein (GFP)

Plating Bacteria

- 16. Flick tubes to mix.
- 17. Using a new sterile pipet, add 100 μl bacteria to appropriate plates (**+pGLO** or **-pGLO**).
- 18. Use a loop to spread bacteria evenly.Use a new loop for each plate.
- 19. Incubate overnight at 37°C or for 2 days at room temperature.

Plates

		–pGLO LB	-pGLO LB/amp	+pGLO LB/amp	+pGLO LB/amp/ara
Components	Bacteria				
	DNA				
	Ampicillin				
	Arabinose				
	Grow?				
	Glow?				

Transformation Efficiency

How successful was your transformation?
 You can calculate the transformation efficiency and compare with other groups.

Transformation efficiency =
$$\frac{\text{Total number of colonies growing on the agar plate}}{\text{Amount of DNA spread on the agar plate (in µg)}}$$

Example
$$= 543 \text{ transformants/µg}$$

 $= 543 \text{ transformants/µg}$
 $= 543 \text{ transformants/µg}$