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What affects the size of a population and how it 
changes over time?
• Population ecology is the study of factors affecting 

the size of a population and how it changes over 
time
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Figure 53.1a 

3



Figure 53.1b 
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CONCEPT 53.1: Biotic and abiotic factors affect 
population density, dispersion, and 
demographics
• A population is a group of individuals of a single 

species living in the same general area
• Populations are described by their boundaries and 

size (number of individuals)
• Boundaries may be natural (a lake or island) or 

arbitrarily defined by an investigator (a county)

5



Density and Dispersion
• Density is the number of individuals per unit area 

or volume
– For example, the number of oak trees per square 

kilometer in the Minnesota county
• Dispersion is the pattern of spacing among 

individuals within the boundaries of the population
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Density: A Dynamic Perspective
• In most cases, it is impractical or impossible to 

count all individuals in a population
• Various sampling techniques can be used to 

estimate densities and total population sizes
– Count the number of individuals in randomly located 

plots, calculate density in plots, extend to entire area
– Use an indicator of population size, such as the 

number of nests, burrows, tracks, or fecal droppings
– Use the mark-recapture method
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Figure 53.2 Determining Population Size Using 
the Mark-Recapture Method
Determining Population Size Using the Mark-
Recapture Method
• Capture, tag, and release a random sample of 

individuals (s) in a population
• Marked individuals are given time to mix back into 

the population
• Capture a second sample of individuals (n), and 

note how many of them are marked (x)
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• The data collected is used to estimate population 
size (N) by applying the following formula:

or, solving for population size,sx
n

= N
sn
xN =
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Figure 53.2 
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• Density is a dynamic property; it increases and 
decreases as individuals are added or removed 
– Immigration, the influx of new individuals from other 

areas, and births increase population size
– Emigration, the movement of individuals out of a 

population, and deaths decrease population size
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Animation: Techniques for Estimating 
Population Density and Size
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Patterns of Dispersion
• The pattern of dispersion is determined by the 

spacing among individuals within the boundaries of 
a population 

• Differences in spacing can provide insight into the 
biotic and abiotic factors affecting individuals
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• The most common pattern of dispersion is 
clumped, in which individuals aggregate in patches

• Individuals may aggregate in areas of high 
resource availability or favorable physical 
conditions  

• Mating behavior and group predation or defense 
against predators can also influence clumped 
dispersions
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Figure 53.3a
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Video: Flapping Geese
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Video: Albatross Courtship Ritual
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• A uniform dispersion is one in which individuals are 
evenly spaced

• Some plants secrete chemicals that inhibit 
germination and growth of competing individuals

• Animals often exhibit territoriality, the defense of a 
bounded physical space against other individuals
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Figure 53.3b 
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• In a random dispersion (unpredictable spacing), the 
position of each individual is independent of other 
individuals

• It occurs in the absence of strong attractions or 
repulsions among individuals or constant 
distribution of key physical or chemical factors 
across the habitat
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Figure 53.3c 

21



Figure 53.3
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Demographics
• Biotic and abiotic factors influence birth, death, and 

migration rates of populations
• Demography is the study of these vital statistics of 

a population and how they change over time
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Life Tables
• A life table is an age-specific summary of the 

survival and reproductive rates within a population
• It is often made by following a cohort, a group of 

individuals of the same age, from birth to death
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• Building a life table requires a method for 
determining the proportion of individuals surviving 
from one age-group to the next

• The number of offspring produced by females in 
each age-group is also needed

• Males are often ignored because only females 
produce offspring
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Table 53.1
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Table 53.1
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Table 53.1
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Survivorship Curves (1 of 5)
• A survivorship curve, a plot of the proportion or 

numbers in a cohort still alive at each age, shows 
the pattern of survivorship for a population
– For example, the approximately straight line of 

the survivorship curve for Belding’s ground 
squirrels indicates a relatively constant rate of 
death
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Figure 53.4 
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• Survivorship curves can be classified into three 
general types
– Type Ⅰ: Low death rates during early and middle life 

and a sharp increase in death rates later in life
– Found in large mammals (for example, humans and 

elephants) that produce few offspring but provide 
them with good care 
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• Type Ⅱ: Constant death rate over the life span
• Found in some rodents, invertebrates, lizards, and 

annual plants
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• Type Ⅲ: High death rates for the young; death rate 
steeply declines for survivors of early period die-off 

• Found in organisms that produce very large 
numbers of offspring but provide little or no care 
(for example, long-lived plants, many fishes, and 
most marine invertebrates)
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Figure 53.5 
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Animation: Investigating the Survivorship 
Curve of Oysters
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• Many species are intermediate to these curves or 
show more complex patterns
– For example, in birds, mortality is often high early in 

life (Type Ⅲ) but fairly constant among adults (Type 
Ⅱ)

• Survivorship curves can also differ among 
populations within a single species
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Reproductive Rates
• The reproductive pattern of a population is 

described by identifying how reproductive output 
varies with the number of breeding females and 
their ages

• Direct counts, mark-recapture, and molecular tools, 
such as DNA profiling, can be used to estimate the 
number of breeding females
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Figure 53.6 
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• Reproductive output for sexual organisms is 
measured as the average number of female 
offspring produced by the females in an age group

• Age-specific reproductive rates vary considerably 
by species
– For example, squirrels have one litter of two to six 

young per year for less than a decade, whereas oak 
trees drop thousands of acorns per year for tens or 
hundreds of years
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CONCEPT 53.2: The exponential model 
describes population growth in an idealized, 
unlimited environment
• Populations of all species have the potential to 

expand greatly when resources are abundant
• In nature, unlimited growth is unsustainable 

because resources are depleted as the population 
gets larger

• Studying population growth under ideal conditions 
reveals how fast and under what conditions rapid 
growth can occur
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Changes in Population Size
• Change in population size during a fixed time 

interval can be defined by the following verbal 
equation:

• If immigration and emigration are ignored, the 
change in population size equals births minus 
deaths

Change in
population

size
Births

Immigrants
entering

population
Deaths

Emigrants
leaving

population
= + – –
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• The population growth rate can be expressed 
mathematically as:

where ΔN is the change in population size, Δt is the 
time interval, B is the number of births, and D is the 
number of deaths during the time interval
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• The population growth equation can be revised to

where R represents the difference between the 
number of births (B) and the number of deaths (D) 
that occur in the time interval

ΔN
Δt = R
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• Per capita (per individual) change in population 
size (rΔt) is the average contribution each individual 
makes to the population size during the time 
interval 
– For example, for a population of 1,000 individuals 

that increases by 16 individuals per year,

rΔt = 16/1,000 = 0.016
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• The formula R = rΔtN is used to calculate how many 
individuals will be added to a population each year
– For example, if rΔt = 0.016 and the population size is 

500,
R = rΔtN = 0.016×500 = 8 per year

• Change in population size can now be written as:

ΔN
Δt = rΔtN
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• Population growth can also be expressed as a rate 
of change at each instant in time:

where r represents the per capita change in 
population size at each instant in time
• dN/dt represents very small changes in population 

size over short (instantaneous) time intervals

dN rN
dt

=
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Exponential Growth
• Exponential population growth occurs under 

ideal conditions; all individuals have access to 
abundant food and reproduce at physiological 
capacity

• Under such conditions, populations may increase in 
size by a constant proportion at each instant
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• The equation of exponential population growth is:

where r is the intrinsic rate of increase, the per 
capita rate at which an exponentially growing 
population increases in size at each instant in time

dN rN
dt

=
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• Exponential population growth results in a J-
shaped curve when population size is plotted over 
time

• The per capita rate of increase is constant, but 
more new individuals are added per unit time when 
the population is large than when it is small
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Figure 53.7 
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BioFlix® Animation: Exponential Growth
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• Exponential growth is characteristic of populations 
that are introduced to a new environment

• It also represents populations that are rebounding 
after drastic reduction by a catastrophic event 
– For example, the elephant population in Kruger 

National Park, South Africa, grew exponentially after 
hunting was banned
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Figure 53.8 
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CONCEPT 53.3: The logistic model describes 
how a population grows more slowly as it nears 
its carrying capacity
• The exponential growth model assumes resources 

will remain abundant as population size increases
• In nature, each individual has access to fewer 

resources as population size increases
• Realistic models of population growth incorporate 

carrying capacity (K), the maximum population 
size that a particular environment can sustain
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• Carrying capacity varies over space and time with 
the abundance of limiting resources

• Energy, shelter, refuge from predators, nutrient 
availability, water, and suitable nesting sites are all 
limiting factors
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• Crowding and resource limitation will affect the per 
capita birth and death rates, causing the per capita 
rate of population growth (r) to drop
– Per capita birth rates decline when individuals 

cannot obtain sufficient resources to reproduce
– Per capita death rates increase if starvation or 

disease increases with density
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The Logistic Growth Model
• In the logistic population growth model, the per 

capita rate of population growth approaches zero 
as the population size nears carrying capacity (K)

• The logistic model starts with the exponential model 
and adds an expression that reduces per capita 
rate of population growth as population size (N) 
increases

( ) –  K NdN rN
dt K

=
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• When N is small compared to K, the term  (K – N)/K
is close to 1, and the per capita rate of population 
growth will be close to r

• When N is large and resources are limiting, the 
term (K – N)/K is close to 0, and the per capita rate 
of population growth is small

• When N equals K, the population stops growing
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Table 53.2 
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• The logistic model produces a sigmoid (S-shaped) 
curve when population size (N) is plotted over time

• New individuals are added most rapidly at 
intermediate population size, when the the
breeding population is substantial and resources 
are abundant 

• The population growth rate (dN/dt) decrease as N
approaches K
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Figure 53.9 
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BioFlix® Animation: Logistic Growth
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The Logistic Model and Real Populations

• Growth of laboratory populations of some small 
animals and microorganisms fit an S-shaped curve 
if resources are limited

• These populations are grown in a constant 
environment lacking predators and competitors
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Figure 53.10a
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• Some populations overshoot K before settling down 
to a relatively stable density
– For example, if food becomes limiting, females may 

use energy reserves to continue reproducing; birth 
rates will decline when reserves are depleted

• Other populations fluctuate greatly and make it 
difficult to define K
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Figure 53.10b
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• Conservation biologists use the logistic growth 
model for several applications
– Predicting rate of recovery for small populations 
– Estimating sustainable harvest rates for wildlife 
– Estimating the critical size below which populations 

become at risk for extinction
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Figure 53.11
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CONCEPT 53.4: Life history traits are products 
of natural selection
• An organism’s life history comprises the traits that 

affect its schedule of reproduction and survival
• Life history traits are evolutionary outcomes 

reflected in the development, physiology, and 
behavior of an organism
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Diversity of Life Histories
• An organism’s life history entails three key 

components
– The age at first reproduction (maturity)
– How often the organism reproduces
– How many offspring are produced per reproductive 

episode
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• The age at first reproduction varies considerably 
across species
– For example, loggerhead turtles typically begin 

reproducing when they are about 30 years old, 
whereas coho salmon first reproduce when they are 
only three or four years old
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• Organisms also vary in how often they reproduce
– Semelparity refers to the case where individuals 

undergo a “one-shot” pattern of big-bang 
reproduction 

– Iteroparity refers to the case where individuals 
undergo repeated reproductive events throughout 
their lifetime
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Figure 53.12
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• Organisms vary widely in the number of offspring 
they produce per reproduction
– For example, white rhinoceros produce only one calf 

per reproduction, while most insects and many 
plants produce large numbers 

• Species that produce one or few offspring may 
provision them better than those that produce many
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“Trade-offs” and Life Histories
• Trade-offs occur because organisms do not have 

access to unlimited resources
• The use of resources for one function (such as 

reproduction) can reduce the resources available 
for another function (such as survival)
– For example, caring for a larger number of young 

reduced survival rates of parents in Eurasian 
kestrels
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Figure 53.13
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• Selective pressures influence trade-offs between 
the number and size of offspring

• Species whose young have a low chance of 
survival often produce many small offspring
– For example, plants that colonize disturbed 

environments, such as dandelions, usually produce 
many small seeds
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Figure 53.14a
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• In some species, parents produce relatively few 
offspring and invest more energy in each offspring 
to increase the probability of survival for each
– For example, Brazil nut trees produce large seeds 

packed with nutrients that help seedlings become 
established
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Figure 53.14b
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• Variation in life history traits can be related to the 
logistic growth model
– K-selection refers to selection for life history traits 

that are advantageous when density is high (near K), 
resources are low, and competition is strong

– r-selection refers to selection for life history traits 
that maximize reproductive success when density is 
low and there is little competition for resources

• These concepts represent two extremes in a range 
of actual life histories

81



CONCEPT 53.5: Density-dependent factors 
regulate population growth
• Answers to the following questions are important in 

practical applications:
– What environmental factors stop a population from 

growing indefinitely?
– Why are some populations fairly stable in size, while 

others are not?
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Population Change and Population Density

• Assuming immigration and emigration offset each 
other, a population will 
– grow when the birth rate exceeds the death rate 
– decline when the death rate exceeds the birth rate

• A birth rate or death rate that does not change with 
population density is density independent 
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• If a death rate increases or a birth rate decreases 
with increasing density, it is density dependent 

• A population is regulated when one or more 
density-dependent factors cause it to decrease 
when large (or increase when small)

• Density-independent factors cannot regulate 
population size
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Figure 53.15
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BioFlix® Animation: Density Dependence
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Mechanisms of Density-Dependent Population 
Regulation
• Density-dependent birth and death rates are an 

example of negative feedback that regulates 
population growth
– For example, in a study of kelp perch populations, 

the death rate increased as hiding spaces from 
predators became scarce at high densities
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Figure 53.16
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Figure 53.17 Exploring Mechanisms of Density-
Dependent Regulation
• In addition to predation, several other mechanisms 

can cause density-dependent regulation:
– Competition for resources
– Disease
– Intrinsic factors
– Territoriality
– Toxic wastes
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Figure 53.17
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Competition for Resources
• In crowded populations, increasing population 

density intensifies competition for resources and 
reduces birth rates
– For example, farmers reduce competition by 

applying fertilizers to reduce nutrient limitations on 
crop yield
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Figure 53.17a
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Disease
• A disease can regulate population density if its 

transmission rate increases as the population 
becomes more crowded
– For example, influenza (flu) and tuberculosis affect a 

greater percentage of people in densely populated 
cities than in rural areas
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Figure 53.17b
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Territoriality
• Territoriality can limit population density when 

space becomes the resource for which individuals 
compete
– For example, cheetahs use chemical markers in 

urine to warn other cheetahs of their territorial 
boundaries
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Figure 53.17c
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Intrinsic Factors
• For some populations, intrinsic (physiological) 

factors appear to regulate population size
– For example, hormonal changes in white-footed 

mice delay sexual maturation and depress the 
immune system at high density

– Birth rates drop even when food and shelter are 
abundant 
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Figure 53.17d
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Toxic Wastes
• Accumulation of toxic wastes at high population 

density can contribute to density-dependent 
regulation of population size
– For example, the concentration of ethanol produced 

by brewer’s yeast becomes toxic at high population 
density
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Figure 53.17e
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Population Dynamics
• The study of population dynamics focuses on the 

complex interactions between biotic and abiotic 
factors that cause variation in population size
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Stability and Fluctuation
• Populations of large mammals were once thought 

to be relatively stable, but long-term studies show 
that they can fluctuate substantially
– For example, there have been two major population 

increases and collapses in the moose population on 
Isle Royale during the last 50 years 

– The first collapse coincided with a peak in the wolf 
population, the second with harsh winter conditions
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Figure 53.18
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Population Cycles: Scientific Inquiry
• While many populations fluctuate at unpredictable 

intervals, others undergo regular boom-and-bust 
cycles
– For example, snowshoe hares and lynx both follow 

roughly 10-year population cycles in the forests of 
northern Canada and Alaska
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Figure 53.19
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• Lynx might be expected to increase and decrease 
in response to the availability of their prey species, 
but it is unclear why the hare population cycles

• Two main hypotheses have been proposed to 
explain the hare’s population cycle
– It follows a cycle of winter food supply
– It is caused by predator-prey interactions

106



• If the hare’s population cycle follows a cycle of 
winter food supply, then the cycles should stop if 
the food supply is increased

• Populations experimentally provided with additional 
food increased in size, but continued to cycle

• Food supplies alone do not cause the population 
cycle in snowshoe hares
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• Ecologists used radio collars to track individual 
hares and determine causes of death

• Predation by several species killed 95% of the 
hares in these studies; none died of starvation 

• When predators were excluded from certain areas, 
the collapse in hare survival was nearly eliminated

• Overexploitation by predators is an essential factor 
affecting snowshoe hare cycles
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Immigration, Emigration, and Metapopulations

• In addition to births and deaths, immigration and 
emigration also influence populations

• When a population becomes crowded and resource 
competition increases, emigration often increases
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• Metapopulations are groups of local populations 
linked by immigration and emigration

• Local populations in a metapopulation occupy 
discrete patches of suitable habitat surrounded by 
unsuitable habitat
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• Habitat patches vary in size, quality, and isolation 
from other patches

• Local populations lost through extinctions can be 
recolonized by immigration from other patches
– For example, migration of the Glanville fritillary 

(butterfly) among habitat patches constantly shifts 
the location of occupied and unoccupied patches
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Figure 53.20
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• In the Glanville fritillary, migration ability depends 
on a number of factors, including genetic makeup

• Ecologists used radar and transponders to track 
individuals with different genotypes at the Pgi gene, 
which codes for an enzyme involved in glycolysis

• Individuals that are heterozygous for this gene can 
fly farther at low temperatures and are more likely 
to colonize new locations compared to 
homozygotes
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Figure 53.UN01
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BioFlix® Animation: Population Ecology
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CONCEPT 53.6: The human population is no 
longer growing exponentially but is still 
increasing extremely rapidly
• In the last few centuries, the human population has 

grown at an unprecedented rate
• No population can grow indefinitely, and humans 

are no exception
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The Global Human Population
• The human population has grown explosively over 

the last four centuries
• The time required for the population to double in 

size decreased from 200 years in 1650 to just 45 
years in 1975

• This is faster than exponential growth, which has a 
constant rate of increase and a constant doubling 
time
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Figure 53.21
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• The global population is now more than 7.6 billion 
people and is increasing by 80 million per year, or 
more than 200,000 people per day

• It is predicted to reach 9.8 billion by the year 2050
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• Though the global population is still growing, the 
rate of growth began to slow during the 1960s

• The annual rate of increase peaked at 2.2% in 
1962, but was only 1.1% in 2018

• Current models project a growth rate of 0.5% by 
2050, adding 49 million more people per year if the 
population reaches the projected 9.8 billion
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Figure 53.22
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Regional Patterns of Population Change
• To maintain population stability, a regional human 

population can exist in one of two configurations
– Zero population growth = 

High birth rate – High death rate
– Zero population growth =

Low birth rate – Low death rate
• The demographic transition is the move from the 

first state to the second state
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• The demographic transition is associated with an 
increase in the quality of health care and improved 
access to education, especially for women

• Populations are near or below the replacement 
level of 2.1 children per female in industrialized 
nations

• Most of the current global population growth is 
concentrated in less industrialized countries
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• The ability to control family sizes through planning 
and voluntary contraception is unique to humans

• In many cultures, women are helping to decrease 
population growth by choosing to delay 
reproduction

• The amount of support that should be provided for 
global family planning efforts is a point of 
contention
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Age Structure
• One important factor affecting population growth is 

a country’s age structure
• Age structure is the relative number of individuals 

of each age in a population
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• Age-structure diagrams (pyramids) can help predict 
a population’s growth trends
– For example, the pyramid for Zambia is skewed 

toward young individuals who could sustain 
explosive population growth through their future 
reproduction
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Figure 53.23
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• Age-structure diagrams can also illuminate social 
conditions and help us plan for the future
– For example, we can predict that employment and 

education opportunities will continue to be a problem 
for Zambia in the foreseeable future 

– In the United States and Italy, a decreasing 
population of younger working-age people will be 
supporting an increasing population of retired 
“boomers” 
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Infant Mortality and Life Expectancy
• Infant mortality and life expectancy at birth vary 

widely in different countries and can influence 
reproductive choices by parents

• Global life expectancy been increasing since 1950
• Social upheaval, decaying infrastructure, and 

disease have reduced life expectancy in some 
countries
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Global Carrying Capacity
• Population ecologists predict a global population of 

9.8 billion people in 2050
• How many humans can the biosphere support?
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Estimates of Carrying Capacity
• The carrying capacity of Earth for humans is 

uncertain; estimates have varied from less than 1 
billion to more than 1,000 billion (1 trillion)

• Scientists have based estimates on logistic growth 
models, area of habitable land, and food availability
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Limits on Human Population Size
• Humans require food, water, fuel, building 

materials, and other resources such as clothing and 
transport

• The ecological footprint concept summarizes the 
aggregate land and water area needed to sustain a 
person, city, or nation
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• One way to estimate the footprint is to add up all 
productive land and divide by the number of people

• This allots 1.7 global hectares (gha) per person; 
any more is unsustainable

• Countries vary greatly in footprint size; the average 
per person is 8 gha in the United States and 2.7 
gha globally

• This overshoots sustainable use by more than 50%
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Figure 53.24

134



• Ecological footprints can also be calculated using 
energy use

• Average energy use differs greatly across different 
regions of the world
– For example, a typical person in the United States, 

Canada, or Norway consumes about 30 times the 
energy of a person in central Africa
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Figure 53.25
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• Fossil fuels are the source of 80% or more of the 
energy used in most developed nations

• Reliance on fossil fuels is changing Earth’s climate 
and increasing the amount of waste humans 
produce
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• Our carrying capacity may also be limited by food, 
space, nonrenewable resources, or waste 
production

• Humans could choose to regulate population 
growth through social change

• Otherwise, it will happen through increased 
mortality due to resource limitation, plagues, war, 
and environmental degradation
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Figure 53.UN02
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Figure 53.UN03
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Figure 53.UN04
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Figure 53.UN05
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Figure 53.UN06
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