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CONCEPT 48.1: Neuron structure and 
organization reflect function in information 
transfer
• The neuron is a cell that exemplifies the close fit 

between form and function
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Neuron Structure and Function

• Most of a neuron’s organelles are in the cell body
• Most neurons have dendrites, highly branched 

extensions that receive signals from other neurons
• The axon is often a much longer extension that 

transmits signals to other cells at synapses
• The cone-shaped base of an axon is called the axon 

hillock
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• A synapse is a junction between an axon and 
another cell

• The part of each axon branch that forms this 
junction is a synaptic terminal

• At most synapses, chemical messengers called 
neurotransmitters pass information from the 
transmitting neuron to the receiving cell

6



Figure 48.2

7



Lines of Communication

• The cone snail kills prey with venom that disables 
neurons

• Neurons are nerve cells that transfer information 
within the body

• Neurons use two types of signals to communicate: 
electrical signals (long-distance) and chemical 
signals (short-distance)
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Introduction to Information Processing

• Nervous systems process information in three 
stages: sensory input, integration, and motor output

• In all but the simplest animals, specialized 
populations of neurons handle each stage of 
information processing
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• Sensory neurons transmit information about 
external stimuli such as light, touch, or smell

• Interneurons integrate (analyze and interpret) the 
information

• Motor neurons transmit signals to muscle cells, 
causing them to contract
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Figure 48.3
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• Interpreting signals in the nervous system involves 
sorting a complex set of paths and connections

• The shape of a neuron can vary from simple to 
quite complex, depending on its role in information 
processing

• When grouped together, the axons of neurons form 
bundles we call nerves
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Figure 48.4
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• Many animals have a complex nervous system that 
consists of
– A central nervous system (CNS), where integration 

takes place; this includes the brain or simpler 
clusters called ganglia

– A peripheral nervous system (PNS), which carries 
information into and out of the CNS

– Neurons of both the CNS and PNS require 
supporting cells called glial cells, or glia
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Figure 48.5
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Video: Dendrites of a Neuron
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CONCEPT 48.2: Ion pumps and ion channels 
establish the resting potential of a neuron
• Every cell has a voltage (difference in electrical 

charge) across its plasma membrane called a 
membrane potential

• The resting potential is the membrane potential of 
a neuron that is not sending signals

• Changes in membrane potential are called action 
potentials
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Formation of the Resting Potential

• In most neurons, the concentration of K+ is higher 
inside the cell, while the concentration of Na+ is 
higher outside the cell

• Sodium-potassium pumps use the energy of ATP 
to transport into the cell K+ and Na+ out of the cell

• This maintains the concentration gradient across 
the membrane

18



Table 48.1

19



Figure 48.6

20



• Ion channels are pores that span the plasma 
membrane, and allow ions to diffuse back and forth 
across the membrane

• Concentration gradients of ions across a 
membrane represent a form of potential energy that 
can be harnessed for cellular processes

• Ion channels convert this chemical potential energy 
to electrical potential energy, through selective 
permeability, allowing only certain ions to diffuse 
across the membrane
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• A neuron at resting potential contains many open 
K+ channels and fewer open Na+ channels; K+
diffuses out of the cell

• The resulting buildup of negative charge within the 
neuron is the major source of membrane potential 
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Figure 48.7
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Animation: Membrane Potentials
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BioFlix® Animation: Resting Potential
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Modeling the Resting Potential

• Resting potential can be modeled by an artificial 
membrane that separates two chambers
– The concentration of KCl is higher in the inner 

chamber and lower in the outer chamber
– K+ diffuses down its gradient to the outer chamber
– Negative charge (Cl–) builds up in the inner chamber

• At equilibrium, both the electrical and chemical 
gradients are balanced
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Figure 48.8a
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• The equilibrium potential (Eion) is the membrane 
voltage for a particular ion at equilibrium and can 
be calculated using the Nernst equation:

[ ] [ ]ion outside inside
=62 mV log ion / io( n( ))E

• The equilibrium potential of K+ (EK) is negative, 
while the equilibrium potential of Na+ (ENa) is 
positive
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Figure 48.8b
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• In a resting neuron, the currents of K+ and Na+ are 
equal and opposite, and the resting potential 
across the membrane remains steady
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CONCEPT 48.3: Action potentials are the 
signals conducted by axons
• Intracellular recording can be used to monitor the 

changes in membrane potential
• Changes in membrane potential occur because 

neurons contain gated ion channels that open or 
close in response to stimuli

• Voltage-gated ion channels open or close in 
response to a change in voltage across the plasma 
membrane of the neuron
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Hyperpolarization and Depolarization

• When gated K+ channels open, K+ diffuses out, 
making the inside of the cell more negative

• This is hyperpolarization, an increase in 
magnitude of the membrane potential
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• Opening other types of ion channels triggers a 
depolarization, a reduction in the magnitude of the 
membrane potential

• For example, depolarization occurs if gated Na+
channels open and Na+ diffuses into the cell
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Figure 48.11b
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Graded Potentials and Action Potentials

• Graded potentials are changes in polarization 
where the magnitude of the change varies with the 
strength of the stimulus

• If a depolarization shifts the membrane potential 
sufficiently, it results in a massive change in 
membrane voltage called an action potential
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• Action potentials have a constant magnitude, are 
all-or-none, and transmit signals over long 
distances

• They arise because some ion channels are 
voltage-gated, opening or closing when the 
membrane potential passes a certain level called 
threshold
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Generation of Action Potentials: A Closer Look

• An action potential results from changes in 
membrane potential as ions move through voltage-
gated channels

• At resting potential
1. Most voltage-gated sodium (Na+) and potassium 

(K+) channels are closed
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Figure 48.12_1
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• When an action potential is generated,
2. Voltage-gated Na+ channels open first, and Na+

flows into the cell
3. During the rising phase, the threshold is crossed, 

the membrane potential increases close to ENa
4. During the falling phase, voltage-gated Na+

channels become inactivated; voltage-gated K+
channels open, and K+ flows out of the cell

43



Figure 48.12_2
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Figure 48.12_3
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Figure 48.12_4
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5. During the undershoot, membrane permeability 
to K+ is at first higher than at rest, then voltage-
gated K+ channels close and resting potential is 
restored
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BioFlix® Animation: Action Potential

49



• During the refractory period, after an action 
potential, a second action potential cannot be 
initiated

• The refractory period is a result of a temporary 
inactivation of the Na+ channels
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Conduction of Action Potentials

• At the site where the action potential is generated 
(usually the axon hillock), an electrical current 
depolarizes the neighboring region of the axon 
membrane

• Action potentials are all-or-none and travel only 
toward the synaptic terminals

• Inactivated Na+ channels behind the zone of 
depolarization prevent the action potential from 
traveling backwards
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Figure 48.13
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• The rate at which action potentials are produced in 
a neuron is proportional to input signal strength

• Gated ion channels and action potentials play a  
central role in nervous system activity

• Mutations in genes that encode ion channels lead 
to disorders affecting the nerves or brain—or the 
muscles or heart

53



BioFlix® Animation: Conduction of an Action 
Potential
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Evolutionary Adaptations of Axon Structure

• The speed of an action potential increases with the 
axon’s diameter

• In vertebrates, axons are insulated by a myelin 
sheath, which causes an action potential’s speed 
to increase

• Myelin sheaths are made by glia—
oligodendrocytes in the CNS and Schwann cells
in the PNS
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Figure 48.14
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• Voltage-gated sodium channels are restricted to 
nodes of Ranvier, gaps in the myelin sheath 

• Action potentials in myelinated axons jump 
between the nodes of Ranvier in a process called 
saltatory conduction
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Figure 48.15
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CONCEPT 48.4: Neurons communicate with 
other cells at synapses
• At electrical synapses, the electrical current flows 

from one neuron to another through gap junctions
• At chemical synapses, a chemical neurotransmitter 

carries information between neurons
• Most synapses are chemical synapses
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• The presynaptic neuron synthesizes and packages 
the neurotransmitter in synaptic vesicles located in 
the synaptic terminal

• The action potential causes the release of the 
neurotransmitter 

• The neurotransmitter diffuses across the synaptic 
cleft and is received by the postsynaptic cell
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Figure 48.16
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BioFlix® Animation: How Synapses Work
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Generation of Postsynaptic Potentials

• At many chemical synapses, the receptor that binds 
and responds to neurotransmitters is a ligand-
gated ion channel, often called an ionotropic 
receptor

• Neurotransmitter binding causes ion channels to 
open, generating a postsynaptic potential

• At some chemical synapses, the ligand-gated ion 
channels are permeable to both K+ and Na+
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• Postsynaptic potentials fall into two categories
– Excitatory postsynaptic potentials (EPSPs) are 

depolarizations that bring the membrane potential 
toward threshold

– Inhibitory postsynaptic potentials (IPSPs) are 
hyperpolarizations that move the membrane 
potential farther from threshold
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Summation of Postsynaptic Potentials

• The cell body and dendrites of a postsynaptic 
neuron may receive inputs from hundreds or 
thousands of synaptic terminals

• A single EPSP is usually too small to trigger an 
action potential in a postsynaptic neuron
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• Individual postsynaptic potentials can combine to 
produce a larger potential in a process called 
summation

• If two E P S P s are produced in rapid succession, an 
effect called temporal summation occurs
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• In spatial summation, E P S P s produced nearly 
simultaneously by different synapses on the same 
postsynaptic neuron add together 

• The combination of E P S P s through spatial and 
temporal summation can trigger an action potential
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• Through summation, an I P S P can counter the 
effect of an E P S P

• The summed effect of E P S P s and I P S P s 
determines whether an axon hillock will reach 
threshold and generate an action potential
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Animation: Action Potentials
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Termination of Neurotransmitter Signaling

• After a response is triggered, the chemical synapse 
returns to its resting state

• The neurotransmitter molecules are cleared from 
the synaptic cleft

• Some are inactivated by enzymatic hydrolysis
• Others are recaptured into the presynaptic neuron
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• Clearing neurotransmitter from the synaptic cleft is 
an essential step in nervous system transmission

• Blocking this process can have severe effects
• The nerve gas sarin triggers paralysis and death 

due to inhibition of the enzyme that breaks down 
the neurotransmitter controlling skeletal muscles
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Modulated Signaling at Synapses

• There are chemical synapses in which the receptor 
for the neurotransmitter is not part of an ion 
channel

• At these synapses, the neurotransmitter binds to a 
G protein-coupled receptor that is called 
metabotropic

• In this case, movement of ions through a channel 
depends on one or more metabolic steps
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• Binding of a neurotransmitter to a metabotropic 
receptor activates a signal transduction pathway in 
the postsynaptic cell involving a second messenger

• The signal transduction pathway leads to 
amplification such that many channels can be 
opened or closed in response

• Many neurotransmitters have both ionotropic and 
metabotropic receptors
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Neurotransmitters

• A single neurotransmitter may bind specifically to 
more than a dozen different receptors

• A single neurotransmitter could excite postsynaptic 
cells expressing one receptor and inhibit 
postsynaptic cells expressing a different receptor

• Acetylcholine is a common neurotransmitter in 
vertebrates and invertebrates
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Acetylcholine

• Acetylcholine is involved in muscle stimulation, 
memory formation, and learning

• Vertebrates have two major classes of 
acetylcholine receptor, one that is ligand gated and 
one that is metabotropic
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• A number of toxins disrupt acetylcholine 
neurotransmission

• These include nicotine, the nerve gas sarin, and the 
botulinium toxin produced by certain bacteria

• Acetylcholine is just one of more than 100 known 
neurotransmitters

• The remainder fall into four classes: amino acids, 
biogenic amines, neuropeptides, and gases
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Table 48.2

79



Amino Acids

• Glutamate is one of several amino acids that can 
act as a neurotransmitter in vertebrates and 
invertebrates

• Glycine acts at inhibitory synapses in parts of the 
C N S outside the brain

• Gamma-aminobutyric acid (G A B A) is the 
neurotransmitter at most inhibitory synapses in the 
brain
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Biogenic Amines

• Biogenic amines include norepinephrine, 
epinephrine, dopamine, and serotonin

• Norepinephrine is made from tyrosine
• Biogenic amines have a central role in a number 

of nervous system disorders
• Parkinson’s disease is associated with a lack of 

dopamine in the brain
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Neuropeptides

• Several neuropeptides, relatively short chains of 
amino acids, also function as neurotransmitters

• Neuropeptides include substance P,  and 
endorphins, which both affect our perception of 
pain

• Opiates bind to the same receptors as endorphins 
and can be used as painkillers
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Gases

• Gases such as nitric oxide (N O) are local 
regulators in the P N S

• Unlike most neurotransmitters, N O is not stored in 
cytoplasmic vesicles, but is synthesized on 
demand

• It is broken down within a few seconds of 
production
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• Although inhaling C O can be deadly, the 
vertebrate body synthesizes small amounts of it, 
some of which is used as a neurotransmitter
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Figure 48.UN01
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Data from C. B. Pert and S. H. Snyder, Opiate receptor: demonstration in nervous tissue, 
Science 179:1011–1014 (1973).
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Figure 48.UN02
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Figure 48.UN03
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Figure 48.UN04
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