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What are some factors that plants sense and 
respond to?
• Plants receive and respond to many signals from 

the environment 
– For example, sunflowers track the sun from east to 

west each day
– Exposure to sunlight warms the flower heads, 

releasing chemicals to attract pollinators
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Figure 39.1
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Figure 39.1b

4



CONCEPT 39.1: Signal transduction pathways 
link signal reception to response
• Plants are not inert or passive; they sense and 

integrate information from their environment
• Plant development is simple, but their cells and 

molecular biology are as complex as that of animal 
cells

• Whereas, animals respond to the environment by 
movement, plants respond to the environment by 
altering growth and development
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• A potato left growing in darkness produces pale 
stems, unexpanded leaves, and short roots

• These are physical adaptations for growing in 
darkness, collectively called etiolation

• After exposure to light, a potato undergoes de-
etiolation (greening), in which shoots and roots 
grow normally
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Figure 39.2
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• De-etiolation is an example of how a cell’s 
reception of a signal (light) is transduced into a 
response (greening)

• The stages of cell signal processing include the 
following: reception, transduction, and response
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Figure 39.3
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Reception
• Signals are detected by receptors, proteins that 

change in shape in response to specific stimuli
• Phytochrome is the light-detecting receptor 

involved in de-etiolation
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Transduction
• Second messengers transfer and amplify signals 

from receptors to proteins that cause responses
• Two types of second messengers are required for 

the de-etiolation response: calcium ions (Ca2+) and 
cyclic GMP (cGMP)
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• Phytochrome signal transduction is carried out in 
response to light by
– Opening Ca2+ channels, which increases Ca2+ levels 

in the cytosol
– Activating an enzyme that produces cGMP
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Figure 39.4

13



Response
• A signal transduction pathway leads to regulation of 

one or more cellular activities
• In most cases, these responses involve increased 

enzyme activity
• This can occur by transcriptional regulation or post-

translational modification
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Post-translational Modification of Preexisting 
Proteins
• Post-translational modification activates preexisting 

proteins
• Modification typically involves the phosphorylation 

of specific amino acids, which alters the 
hydrophobicity and activity of the enzyme

• The second messengers cGMP and Ca2+ activate 
protein kinases directly
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• Protein kinases often work in a cascade linking 
initial stimuli to gene expression through 
phosphorylation of transcription factors

• Protein phosphatases “switch off” the signal 
transduction pathways by dephosphorylating 
proteins
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Transcriptional Regulation
• Specific transcription factors bind directly to regions 

of DNAand control transcription of specific genes
• Some transcription factors are activators that 

increase the transcription of specific genes
• Other transcription factors are repressors that 

decrease the transcription of specific genes
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De-etiolation (“Greening”) Proteins
• De-etiolation activates enzymes that

– function in photosynthesis directly
– supply the chemical precursors for chlorophyll 

production
– affect the levels of plant hormones that regulate 

growth
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CONCEPT 39.2: Plants use chemicals to 
communicate
• Plants use chemicals to communicate both with the 

external environment and between different parts of 
the plant

• Unlike animals, plants can transport 
macromolecules such as proteins cell to cell 
through plasmodesmata
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General Characteristics of Plant Hormones
• A hormone is a signaling molecule that is produced 

in low concentrations in one part of the body and 
transported to other parts

• Hormones bind to specific receptors and trigger 
responses in target cells and tissues
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• In plants, some signaling molecules only act locally 
and others occur in concentrations much greater 
than typical hormones

• Plant hormones, also called plant growth 
regulators, are molecules that control one or more 
specific physiological processes within a plant

21



• Plant hormones are produced in very low 
concentrations, but can have profound effects on 
growth and development

• Each hormone has multiple effects, but multiple 
hormones can also influence a single process

• Plant responses depend on amount, concentration, 
and combination of specific hormones present
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A Survey of Plant Hormones
• The major plant hormones include

– Auxin (IAA)
– Cytokinins
– Gibberellins (GA)
– Abscisic acid (ABA)
– Ethylene
– Brassinosteroids
– Jasmonates
– Strigolactones
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Table 39.1
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Auxin
• Any response resulting in curvature of organs 

toward or away from a stimulus is called a tropism
• The growth of a shoot toward or away from light is 

called phototropism
– Growth toward light is positive phototropism
– Growth away from light is negative phototropism
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• Charles Darwin conducted experiments on 
phototropism with his son Francis

• They observed positive phototropism in grass 
seedlings only if the tip of the coleoptile was 
present and exposed to light

• They postulated that a signal was transmitted from 
the tip to the elongating region

• The mobile chemical substance responsible was 
later identified by Peter Boysen-Jensen
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Figure 39.5
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Video: Phototropism
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• The term auxin refers to any chemical that 
promotes elongation of coleoptiles

• Indoleacetic acid (IAA) is a common auxin in plants; 
in this lecture the term auxin refers specifically to 
IAA
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• Transport of auxin is polar; it is produced in shoot 
tips and is transported cell to cell down the stem

• Auxin transporter proteins move the hormone from 
the basal end of one cell into the apical end of the 
neighboring cell

• The direction of auxin does not change in response 
to gravity
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Figure 39.6
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The Role of Auxin in Cell Elongation
The Role of Auxin in Cell Elongation
• One of auxin’s chief functions is to stimulate 

elongation of cells in young developing shoots
• Auxin stimulates cell growth by binding to a 

receptor in the nucleus
• Auxin concentration within the range of about 10-8

to 10-4 M is required to stimulate growth; at higher 
concentrations, it inhibits cell elongation
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• According to the acid growth hypothesis, auxin 
stimulates proton pumps in the plasma membrane

• Proton pumps move H+ into the cell, lowering the 
pH in the cell wall and increasing the membrane 
potential

33



• Reduced pH activates expansins, enzymes that 
loosen the fabric of the cell wall

• Osmotic uptake of water into the cell increases 
turgor pressure 

• Increased cell wall plasticity combined with 
increased turgor pressure enable the cell to 
elongate
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Figure 39.7
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• Auxin also rapidly alters gene expression and 
stimulates a sustained growth response
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Auxin’s Role in Plant Development
• Polar transport of auxin plays a role in pattern 

formation of the developing plant
• Reduced auxin flow from the shoot of a branch 

stimulates growth in lower branches
• Auxin transport also plays a role in phyllotaxy, the 

arrangement of leaves on the stem
• Polar transport of auxin from leaf margins directs 

leaf venation pattern
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• The activity of the vascular cambium is under 
control of auxin transport

• Reduction in auxin transport capacity and 
expression of genes encoding auxin transporters 
occurs at the end of the growing season

• Organization of female angiosperm gametophytes 
is regulated by an auxin gradient 
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Practical Uses for Auxins
• The natural auxin indolebutyric acid (IBA) is used in 

vegetative propagation of cuttings because it 
stimulates growth of adventitious roots 

• Synthetic auxins used in herbicides such as 2,4-D, 
kill eudicots by causing a hormonal overdose; 
monocots are able to inactivate these hormones
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• Developing seeds produce auxin, which promotes 
fruit development

• Greenhouse tomatoes produce few seeds
• Spraying synthetic auxins on greenhouse tomatoes 

improves fruit development
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Cytokinins
• Cytokinins are so named because they stimulate 

cytokinesis (cell division)
• The most common natural cytokinin is zeatin

because it was first discovered in maize (Zea
mays)

• Cytokinins influence cell division, cell differentiation, 
and apical dominance
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Control of Cell Division and Differentiation
• Cytokinins are produced in actively growing tissues 

such as roots, embryos, and fruits
• Cytokinins work together with auxin to control cell 

division and differentiation
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• When plant stem tissue is cultured in the absence 
of cytokinins, the cells grow large but do not 
undergo mitosis 

• If cytokinins are added along with auxin, the cells 
divide; the ratio controls cell differentiation
– If auxin and cytokinins are in equal concentration, a 

mass of undifferentiated cells grows
– If cytokinin levels increase, shoot buds develop; if 

auxin levels increase, roots form
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Control of Apical Dominance
• Apical dominance is a terminal bud’s ability to 

suppress development of axillary buds
• It is under the control of sugar, cytokinins, auxin, 

and strigolactones
• Removal of the apical bud increases sugar 

availability and decreases auxin and strigolactone
levels in the stem, initiating axillary bud growth

• Applying auxin to the shoot tip re-suppresses the 
growth of lateral buds
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Figure 39.8
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Anti-aging Effects
• Cytokinins inhibit protein breakdown, stimulate 

RNA and protein synthesis, and mobilize nutrients 
from surrounding tissues to slow the aging in plant 
organs
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Gibberellins
• Gibberellins have a variety of effects, such as 

stem elongation, fruit growth, and seed germination
– For example, in “foolish seedling disease,” 

gibberellins produced by a pathogenic fungus 
causes rice seedlings to grow so tall and spindly that 
they fall over 
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Stem Elongation
• Gibberellins are produced in young roots and 

leaves
• They stimulate growth of leaves and stems by 

enhancing cell elongation and cell division
• They are hypothesized to activate the enzymes that 

loosen cell walls and facilitate entry of expansin
proteins

• Bolting, rapid growth of the floral stalk, is induced 
by gibberellins
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Figure 39.9
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Fruit Growth
• In many plants, both auxin and gibberellins must be 

present for fruit to develop
• Gibberellin spray is used on Thompson seedless 

grapes to make them grow much larger than 
normal

• Gibberellin spray also makes the internodes 
elongate, creating more space between individual 
grapes
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Figure 39.9
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Germination
• After water is imbibed, release of gibberellins from 

the embryo signals seeds to break dormancy
• Treatment with gibberellins can induce germination 

in seeds that normally require specific 
environmental conditions to break dormancy
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Figure 39.10
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Abscisic Acid
• Abscisic acid (ABA) slows growth, often by 

antagonizing the actions of growth hormones
• ABA has many other effects on plants including 

seed dormancy and drought tolerance
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Seed Dormancy
• Seed dormancy increases the likelihood that the 

seed will germinate only in optimal conditions
• Many dormant seeds germinate when ABA is 

removed or inactivated
• The ratio of ABA to gibberellins often affects 

whether seeds will break dormancy
• Precocious (early) germination can be caused by 

inactive or low levels of ABA
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Figure 39.11
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Drought Tolerance
• ABA is the primary internal signal that enables 

plants to withstand drought
• ABA accumulation in wilting leaves causes stomata 

to close rapidly
• Transport of ABA from water-stressed root systems 

to leaves can act as an “early warning system” 
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Ethylene
• Plants produce ethylene in response to stresses 

such as drought, flooding, mechanical pressure, 
injury, and infection

• It is also produced during fruit ripening and 
programmed cell death and in response to 
application of high concentration auxin

• Ethylene’s effects include response to mechanical 
stress, senescence, leaf abscission, and fruit 
ripening
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The Triple Response to Mechanical Stress
• Ethylene is produced when a seedling tip pushes 

against an obstacle 
• The production of ethylene induces a triple 

response that slows stem elongation, thickens the 
stem, and causes it to grow horizontally

• Vertical growth resumes when the effects of the 
ethylene wear off
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Figure 39.12
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• Some Arabidopsis mutants have abnormal triple 
responses
– Ethylene-insensitive (ein) mutants fail to undergo the 

triple response after exposure to ethylene
– Ethylene-overproducing (eto) mutants undergo the 

triple response even in the absence of obstacles
– Constitutive triple-response (ctr) mutants undergo a 

triple response even if ethylene is not present
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Figure 39.13
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Senescence
• Senescence is the programmed death of certain 

cells, organs, or entire plants
• A burst of ethylene is associated with the onset of 

apoptosis, programmed cell death
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Leaf Abscission
• When a leaf falls in autumn, it breaks off at an 

abscission layer near the base of the petiole
• The balance of ethylene to auxin controls leaf 

abscission
• Leaf abscission occurs when ethylene prevails over 

auxin
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Figure 39.14
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Animation: Leaf Abscission
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Fruit Ripening
• In many cases, a burst of ethylene production in a 

fruit triggers the ripening process
• Ethylene triggers ripening, and ripening triggers 

release of more ethylene
• Fruit producers can control ripening by picking 

green fruit and controlling ethylene levels
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More Recently Discovered Plant Hormones
• Brassinosteroids are chemically similar to 

cholesterol and the sex hormones of animals
• They induce cell elongation and division in stem 

segments and seedlings at low concentration
• They slow leaf abscission and promote xylem 

differentiation
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• Jasmonates, including jasmonate (JA) and methyl 
jasmonate (MeJA) play important roles in plant 
defense and development

• They are produced in response to wounding and 
are involved in controlling plant defenses
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• Jasmonates also regulate many other physiological 
processes, including
– Nectar secretion 
– Fruit ripening
– Pollen production
– Flowering time
– Seed germination
– Root growth
– Tuber formation
– Mycorrhizal symbioses
– Tendril coiling 
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• Strigolactones are xylem-mobile chemicals that
– Stimulate seed germination
– Suppress adventitious root formation
– Help establish mycorrhizal associations
– Help control apical dominance

• Strigolactones are named for parasitic Striga plants
• Striga seeds germinate when host plants exude 

strigolactones through their roots
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CONCEPT 39.3: Responses to light are critical 
for plant success
• Light cues many key events in plant growth and 

development
• Effects of light on plant morphology are called 

photomorphogenesis
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• Plants detect not only the presence of light but also 
its direction, intensity, and wavelength (color)

• A graph called an action spectrum depicts the 
relative response of a process to different 
wavelengths of light

• Action spectra are useful in studying any process 
that depends on light
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• Action spectra can be used to determine which 
responses are mediated by a specific 
photoreceptor 

• There are two major classes of light receptors: 
blue-light photoreceptors and phytochromes
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Blue-Light Photoreceptors
• Pigments that absorb blue light are called blue-

light photoreceptors
• Blue light initiates a variety of plant responses such 

as hypocotyl elongation, stomatal opening, and 
phototropism
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• Cryptochromes are blue-light receptors involved in 
the inhibition of stem elongation

• Phototropin is a protein kinase involved in 
mediating blue-light-mediated stomatal opening, 
chloroplast movements, and phototropic curvatures
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Figure 39.15
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Phytochrome Photoreceptors
• Phytochromes are pigments that absorb mostly 

red and far-red light
• They regulate many of a plant’s responses to light 

including de-etiolation, seed germination, and 
shade avoidance

78



Phytochromes and Seed Germination
• Many seeds remain dormant until light and other 

conditions are near optimal 
• Seeds can remain dormant for years until light 

conditions change
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• Scientists determined the action spectrum for light-
induced germination of lettuce seeds in the 1930s

• Red light increased germination, while far-red light 
inhibited germination

• The effects of red and far-red light are reversible; 
the final light exposure determines the response

• The photoreceptors responsible for the opposing 
effects of red and far-red light are phytochromes
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Figure 39.16
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• Phytochromes exist in two photoreversible states, 
with conversion of Pr to Pfr triggering many 
developmental responses

• Red light triggers the conversion of Pr to Pfr
• Far-red light triggers the conversion of Pfr to Pr
• Conversion of Pr to Pfr is faster than Pfr to Pr
• Sunlight contains both red and far-red light; it 

increases the ratio of Pfr to Pr triggering germination
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Figure 39.17
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Phytochromes and Shade Avoidance
• The phytochrome system also provides the plant 

with information about the quality of light
• Leaves in the canopy absorb red light and allow 

far-red light to pass through to the shaded plants 
below

• When a tree is shaded, the phytochrome ratio shifts 
in favor of Pr, inducing vertical growth

• This is called the “shade avoidance” response

84



Biological Clocks and Circadian Rhythms
• Many plant processes oscillate during the day in 

response to light and temperature changes
• Many other processes oscillate with a frequency of 

24 hours, even under constant environmental 
conditions
– For example, many legumes lower their leaves in the 

evening and raise them in the morning, even when 
kept in constant light or darkness

85



Figure 39.18
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• Circadian rhythms are cycles that are about 24 
hours long and are governed by an internal “clock”

• These cycles can be free-running, varying from 21 
to 27 hours, when organisms are kept in a constant 
environment

• The 24-hour period arises from the transcription of 
“clock genes” regulated through negative-feedback 
loops
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The Effect of Light on the Biological Clock
• Light is the factor that entrains the biological clock 

to precisely 24 hours every day
• Both phytochromes and blue-light photoreceptors 

can entrain circadian rhythms in plants
• Phytochrome conversion marks sunrise and 

sunset, providing the biological clock with 
environmental cues
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Photoperiodism and Responses to Seasons
• Many critical events in plant life cycles, such as 

seed germination and flowering, occur seasonally
• Plants detect the time of year based on changes in 

photoperiod, the relative lengths of night and day
• Photoperiodism is a physiological response to 

photoperiod
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Photoperiodism and Control of Flowering
• In many species, flowering only occurs during a 

specific photoperiod
• Plants that flower when a light period is shorter 

than a critical length are called short-day plants
• Plants that flower when a light period is longer than 

a certain number of hours are called long-day 
plants

• Flowering in day-neutral plants is controlled by 
plant maturity, not photoperiod
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Critical Night Length
• In the 1940s, researchers discovered that flowering 

and other responses to photoperiod are actually 
controlled by night length, not day length
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• Short-day plants are governed by whether the 
critical night length sets a minimum number of 
hours of darkness

• Long-day plants are governed by whether the 
critical night length sets a maximum number of 
hours of darkness
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Figure 39.19
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• Red light is the most effective color in interrupting 
the night length

• Phytochrome is the pigment that detects the red 
light

• A flash of red light followed by a flash of far-red light 
does not disrupt night length
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Figure 39.20
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• Some plants flower after only a single exposure to 
the required photoperiod

• Other plants need several successive days of the 
required photoperiod

• Still others need an environmental stimulus in 
addition to the required photoperiod
– For example, vernalization is a pretreatment with 

cold to induce flowering
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A Flowering Hormone?
• Photoperiod is detected by leaves, which cue buds 

to develop as flowers
• The flowering signal molecule is called florigen
• Florigen is a protein governed by the FLOWERING 

LOCUS T (FT) gene

97



Figure 39.21
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CONCEPT 39.4: Plants respond to a wide 
variety of stimuli other than light
• Because they are immobile, plants must adjust to a 

range of environmental circumstances through 
developmental and physiological mechanisms
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Gravity
• Response to gravity is known as gravitropism
• Roots show positive gravitropism and grow 

downward; shoots show negative gravitropism and 
grow upward

• Plants may detect gravity by the settling of 
statoliths, dense cytoplasmic components
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Figure 39.22
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Video: Gravitropism
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• Some Arabidopsis mutants that lack statoliths are 
still capable of gravitropism

• Dense organelles, in addition to starch granules, 
may contribute to gravity detection
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Mechanical Stimuli
• The term thigmomorphogenesis refers to 

changes in form that result from mechanical 
disturbance
– For example, rubbing stems of young plants a 

couple of times daily results in plants that are shorter 
than controls
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Figure 39.23
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• Thigmotropism is growth in response to touch
• It occurs in vines and other climbing plants
• Some plants undergo rapid leaf movements in 

response to mechanical stimulation 
– For example, Mimosa pudica folds its leaflets and 

collapses in response to touch
• The touch response results from the transmission 

of electrical impulses called action potentials
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Figure 39.24
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Video: Mimosa Leaves
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Environmental Stresses
• Environmental stresses, such as flooding, drought, 

or extreme temperatures, can have adverse effects 
on survival, growth, and reproduction

• Stresses can be biotic (living) or abiotic (nonliving)
– Biotic stresses include herbivores and pathogens
– Abiotic stresses include drought, flooding, salt 

stress, heat stress, and cold stress
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Drought
• Plants may wilt or die when water loss by 

transpiration exceeds water absorption
• During drought, plants reduce transpiration by 

closing stomata, reducing exposed surface area, 
and in some species, shedding leaves

• Plants respond to chemical signals from wilting 
neighbors, priming themselves to respond to 
drought stress
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Flooding
• Waterlogged soils lack the air spaces needed to 

provide oxygen for cellular respiration in roots
• Enzymatic destruction of root cortex cells creates 

air tubes that function as “snorkels” helping plants 
survive oxygen deprivation during flooding

• Some plants, such as mangroves, also produce 
aerial roots
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Figure 39.25
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Salt Stress
• Sodium and some other ions are toxic to plants in 

high concentrations
• Salt can also lower the water potential of the soil 

solution and reduce water uptake
• Plants respond to salt stress by producing solutes 

well tolerated at high concentrations
• This process keeps the water potential of cells 

more negative than that of the soil solution
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Heat Stress
• Excessive heat can denature a plant’s enzymes
• Closing stomata can reduce water loss, but at the 

cost of the evaporative cooling provided by 
transpiration

• Heat-shock proteins are produced at 
temperatures above 40ºC to help protect other 
proteins from heat stress
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Cold Stress
• Cold temperatures decrease membrane fluidity
• Membrane fluidity is maintained in the cold by 

increasing the proportion of unsaturated fatty acids 
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• Ice formation during freezing reduces water 
potential outside the cell 

• Frost-tolerant species reduce water loss by 
increasing solute concentration of the cytoplasm 

• Plants, and many other organisms, have antifreeze 
proteins that hinder the formation of ice crystals

• Frost tolerance is increased in some crop plants by 
engineering antifreeze genes into their genomes
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CONCEPT 39.5: Plants respond to attacks by 
pathogens and herbivores
• Plants have formed mutually beneficial interspecific  

interactions with many species including 
mycorrhizal fungi and animal pollinators

• Plants are also subject to attack by herbivorous 
animals and pathogenic viruses, bacteria, and fungi

• Defense systems have evolved to deter herbivory, 
prevent infection, and combat pathogens
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Defenses Against Pathogens
• A plant’s first line of defense against infection is the 

barrier presented by the epidermis and periderm
• Pathogens can enter through wounds or natural 

openings, such as stomata
• Two types of immune response defend the plant 

after pathogens enter: PAMP-triggered immunity 
and effector-triggered immunity
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PAMP-Triggered Immunity
• The first line of immune defense depends on the 

plant’s ability to recognize pathogen-associated 
molecular patterns (PAMPs)

• These molecular sequences are specific to certain 
pathogens

• PAMP recognition starts a chain of signaling events 
leading to the production of antimicrobial chemicals 
and toughening of the cell wall
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Effector-Triggered Immunity
• Plants and pathogens have engaged in an 

evolutionary arms race
• Some pathogens have evolved the ability to deliver 

effectors, proteins that suppress PAMP-triggered 
immunity, to shut down plant immune systems

• Effector-triggered immunity evolved in response to 
these pathogens
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• Effector-triggered immunity results from the action 
of hundreds of disease resistance (R) genes 

• Each R protein is activated by a specific effector
• R proteins trigger signal transduction pathways that 

activate defenses in response to pathogen 
detection

• Defenses include the hypersensitive response and 
systemic acquired resistance
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The Hypersensitive Response
• Local cell and tissue death at and near the infection 

site is the hypersensitive response
• This response induces production of enzymes and 

chemicals that attack the pathogen
• It also stimulates changes in cell walls, such as 

lignin formation, that confine the pathogen
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Figure 39.26
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Systemic Acquired Resistance
• Systemic acquired resistance arises from the 

plant-wide expression of defense genes
• It “sounds the alarm” of infection to the whole plant 

and provides protection from a diversity of 
pathogens for several days
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• Methylsalicylic acid is a signaling molecule 
produced around the infection site 

• It is carried to other remote sites in the phloem and 
converted to salicylic acid

• Salicylic acid triggers the defense system to 
respond rapidly to another infection
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• Plant disease epidemics can alter plant community 
structure when they occur in natural populations

• In crop plants, they have the potential to cause 
starvation and suffering in human populations

• Plant biologists are stockpiling the seeds of wild 
relatives of crop plants to preserve the genetic 
diversity required to curb future plant epidemics
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Defenses Against Herbivores
• Herbivory, animals eating plants, can restrict plant 

growth because energy is diverted into defense
• Plants counter excessive herbivory with defenses 

that can be observed at multiple levels of biological 
organization
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Figure 39.27
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Figure 39.27 Make connections: levels of plant 
defenses against herbivores
Molecular-Level Defenses
• Chemical compounds such as terpenoids, 

phenolics, and alkaloids are produced to deter 
attackers

• These chemicals can disrupt herbivore 
development or digestion, or make plants taste 
unpleasant
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Cellular-Level Defenses
• Cells may be specialized to form trichomes, store 

chemical deterrents, or produce irritants

131



Figure 39.27
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Tissue-Level Defenses
• Some leaves are toughened with sclerenchyma 

tissue, making them difficult for herbivores to chew
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Figure 39.27
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Organ-Level Defenses
• Leaves can be modified into spines and bristles to 

provide mechanical defense
• Some species have adaptations that make the 

leaves appear less attractive to herbivores
– For example, leaves may appear partially eaten, as 

in the snowflake plant
– Other species have structures that mimic insect eggs 

to deter female insects from laying eggs
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Figure 39.27
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Organismal-Level Defenses
• Plants may alter their physiology in response to 

attack by herbivores
– For example, tobacco plants alter their flowering time 

from night to morning in response to feeding by 
hawk-moth larvae
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Figure 39.27
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Population-Level Defenses
• Some plants release chemicals in response to 

herbivore attack that trigger defense responses in 
other nearby plants

• Other plant populations use masting, synchronous 
mass seed production following long intervals, to 
ensure at least some seeds survive herbivory
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Figure 39.27
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Community-Level Defenses
• Some plants “recruit” predatory animals that help 

defend against specific herbivores
– For example, in response to herbivore attack, some 

plants release chemicals that attract parasitoid 
wasps

– The wasps lay eggs inside caterpillars feeding on the 
plant; the developing larvae feed on the caterpillar
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Figure 39.27
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Figure 39.UN01
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Figure 39.UN02
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Figure 39.UN03
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Figure 39.UN04
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Figure 39.UN05
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Figure 39.UN06
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Figure 39.UN07
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