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How do angiosperms reproduce sexually?
• Angiosperms have adapted mechanisms to attract 

animal pollinators that help them reproduce 
sexually by transferring their pollen 
– For example, the flowers of the Ophrys speculum 

orchid resemble female Dasyscolia ciliata wasps 
– Male wasps are attracted to the flowers and attempt 

to mate with them, transferring pollen in the process
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Figure 38.1a
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Figure 38.1
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How do angiosperms reproduce sexually?
• Angiosperms are the most important group of 

plants in most terrestrial ecosystems
• The cultivation of angiosperms forms the basis for 

much of agriculture
• Humans have used artificial selection and genetic 

engineering to modify wild angiosperms into 
modern crop species
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CONCEPT 38.1: Flowers, double fertilization, 
and fruits are key features of the angiosperm 
life cycle
• Plant life cycles are characterized by the alternation 

between multicellular sporophyte and gametophyte 
generations

• Sporophytes are diploid (2n) plants that produce 
haploid spores by meiosis

• Spores divide by mitosis and form gametophytes, 
which are haploid (n) plants that produce gametes 
(sperm and eggs) by mitosis

7



• In angiosperms, the sporophyte is the dominant 
generation; they are larger, more conspicuous, and 
longer-lived than gametophytes

• The angiosperm life cycle is characterized by “three 
Fs”: flowers, double fertilization, and fruits
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Flower Structure and Function
• Flowers are the reproductive shoots of the 

angiosperm sporophyte; they attach to a part of the 
stem called the receptacle

• Flowers consist of four floral organs: carpels, 
stamens, petals, and sepals

• Stamens and carpels are sporophylls (leaves 
specialized for reproduction); sepals and petals are 
sterile modified leaves

9



Figure 38.2
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Video: Flower Blooming (Time Lapse)
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• A carpel (megasporophyll) has a long style with a 
sticky stigma on top that captures pollen 

• At the base of the style is an ovary containing one 
or more ovules

• Fertilized ovules produce seeds
• A single carpel or group of fused carpels is called a 

pistil
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Figure 38.3
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• A stamen (microsporophyll) consists of a filament 
topped by an anther 

• The anther contains microsporangia (pollen sacs) 
that produce pollen 
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• Sepals are structures that resemble leaves; they 
enclose and protect unopened floral buds

• Petals are typically brightly colored to attract 
pollinators
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• Complete flowers contain all four floral organs
• Incomplete flowers lack one or more floral organs, 

for example, petals or stamens
• Sterile flowers lack both stamens and carpels; 

unisexual flowers lack one or the other 
• Clusters of flowers are called inflorescences
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Methods of Pollination
• In angiosperms, pollination is the transfer of pollen 

from anthers to stigma 
• Pollination can occur by wind, water, or animals
• Wind-pollinated species (e.g., grasses and many 

trees) release large amounts of smaller-sized 
pollen

• Most angiosperm species depend on animal 
pollinators to transfer pollen directly between 
flowers
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Figure 38.4 Exploring Flower Pollination
Abiotic Pollination by Wind
• About 20% of angiosperm species are wind-

pollinated 
– For example, grasses and many trees are wind-

pollinated
• Wind-pollinated angiosperms tend to produce 

small, inconspicuous flowers that lack nectar or 
scent and release large amounts of pollen
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Figure 38.4
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Pollination by Bees
• About 65% of all angiosperms require insects for 

pollination
• Bees are the most important insect pollinators, and 

there is concern that their populations are declining
• Bee-pollinated flowers are typically brightly colored, 

primarily yellow or blue, and have a sweet 
fragrance 

• “Nectar guides” are markings that direct insects to 
the nectar-producing glands 

20



Figure 38.4
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Video: Bee Pollination
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Video: Bee Colony Decline
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Pollination by Moths and Butterflies
• Flowers pollinated by moths and butterflies produce 

sweet fragrances
• Butterfly-pollinated flowers are brightly colored; 

moth-pollinated flowers are usually white or yellow
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Figure 38.4
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Pollination by Flies
• Many fly-pollinated flowers look and smell like 

rotten meat
• Flies mistake the flower for a rotting corpse and lay 

their eggs on it
• Pollen is transferred in the process, but the fly 

larvae will have no carrion to eat when they hatch
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Figure 38.4
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Pollination by Bats
• Bat-pollinated flowers are light-colored and 

aromatic
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Figure 38.4
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Video: Bat Pollinating Agave Plant
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Pollination by Birds 
• Bird-pollinated flowers are usually large and bright 

red or yellow, have little odor, and produce large 
quantities of nectar

• The petals of bird-pollinated flowers are often fused 
into a floral tube that fits the curved beak of the bird
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Figure 38.4
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• Coevolution is the joint evolution of two or more 
interacting species in response to selection 
imposed by each other

• The shapes and sizes of flowers often correspond 
to the pollen-transporting parts of their animal 
pollinators
– For example, Darwin correctly predicted a moth with 

a 28-cm-long tongue based on the morphology of a 
particular flower
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Figure 38.5
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• Climate change may be affecting long-standing 
relationships between plants and animal pollinators
– For example, flowers requiring long-tongued 

pollinators have declined under warmer conditions in 
the Rocky Mountains

– Selective pressure has consequently favored bees 
with shorter tongues
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The Angiosperm Life Cycle: An Overview
• The angiosperm life cycle includes 

– Gametophyte development
– Sperm delivery by pollen tubes
– Double fertilization
– Seed development
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• Gametophytes have evolved to become reduced in 
size and wholly dependent on the sporophyte for 
nutrients

• Angiosperm gametophytes are microscopic, and 
their development is obscured by protective tissues
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Figure 38.6
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Video: Flowering Plant Life Cycle (Time Lapse)
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Animation: Angiosperm Life Cycle
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Animation: Sexual Reproduction in 
Angiosperms
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Development of Female Gametophytes (Embryo 
Sacs)
• The embryo sac, or female gametophyte, 

develops within the ovule
• Within an ovule, two integuments surround a 

megasporangium, except at a gap called the 
micropyle
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• One cell in the megasporangium enlarges and 
undergoes meiosis, producing four megaspores, 
only one of which survives

• The megaspore divides without cytokinesis, 
producing one large cell with eight haploid nuclei

• This cell is partitioned into a multicellular female 
gametophyte, the embryo sac
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• Near the micropyle, two synergid cells flank the egg 
and help guide the pollen tube

• Three antipodal cells of unknown function are 
found at the opposite end of the embryo sac

• The other two nuclei, the polar nuclei, share the 
cytoplasm of the central cell 

• The complete ovule consists of the embryo sac, 
enclosed by the megasporangium and surrounded 
by two integuments
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Development of Male Gametophytes in Pollen 
Grains
• Pollen develops within the microsporangia, or 

pollen sacs, of anthers
• Diploid microsporocytes undergo meiosis to 

produce four haploid microspores
• Each microspore undergoes mitosis to produce two 

haploid cells: the generative cell and the tube cell
• A pollen grain consists of this two-celled male 

gametophyte and the spore wall
• The generative cell will pass into the tube cell
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Sperm Delivery by Pollen Tubes
• After landing on a receptive stigma, a pollen grain 

absorbs water and germinates by producing a 
pollen tube 

• The pollen tube grows down into the ovary, and 
discharges two sperm cells near the embryo sac
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Double Fertilization
• Fertilization, the fusion of gametes, occurs after 

the two sperm reach the female gametophyte
• One sperm fertilizes the egg, forming the zygote
• The other sperm combines with the two polar 

nuclei, giving rise to the triploid (3n), food-storing 
endosperm

• This double fertilization ensures that endosperm 
only develops in ovules containing fertilized eggs
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Animation: Plant Fertilization
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Seed Development
• After double fertilization, each ovule develops into a 

seed
• The ovary develops into a fruit, which encloses the 

seed and aid in dispersal by wind or animals
• When a seed germinates, the embryo develops into 

a new sporophyte
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Seed Development and Structure
• After pollination and double fertilization, both the 

endosperm and the embryo develop within the 
forming seed

• A mature seed consists of a dormant embryo 
surrounded by stored food and protective layers
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Endosperm Development
• Endosperm development usually precedes embryo 

development
• In most monocots and many eudicots, endosperm 

stores nutrients that can be used by the seedling
• In other eudicots, the food reserves of the 

endosperm are exported to the cotyledons (seed 
leaves)
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Embryo Development
• The first mitotic division of the zygote is 

asymmetrical, splitting it into a large basal cell and 
a small terminal cell

• The basal cell produces a suspensor, which 
anchors the embryo to the parent plant 

• The suspensor also helps transfer nutrients from 
the parent plant to the embryo 
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• The terminal cell divides to form a proembryo (early 
embryo) that is attached to the suspensor

• The cotyledons form as bumps on the proembryo, 
forming a heart-shape

• The embryo elongates after cotyledon appearance
• The embryonic shoot apex forms between the 

cotyledons; the embryonic root apex forms near the 
suspensor attachment
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Figure 38.7
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Animation: Embryo and Endosperm 
Development
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Structure of the Mature Seed
• The embryo and its food supply are enclosed by a 

hard, protective seed coat
• The seed dehydrates and enters a state of 

dormancy
• A mature seed is only about 5–15% water
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• In some eudicots, such as the garden bean, the 
embryo consists of the embryonic axis attached to 
two fleshy cotyledons

• Below the cotyledons, the embryonic axis is called 
the hypocotyl and terminates in the radicle 
(embryonic root)
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• Above the cotyledons and below the first pair of 
leaves, the embryonic axis is called the epicotyl

• The plumule comprises the epicotyl, young leaves, 
and shoot apical meristem

58



Figure 38.8
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• The cotyledons of garden beans absorb the 
carbohydrates from the endosperm during seed 
development

• The seeds of other eudicots, such as castor beans, 
retain food resources in the endosperm and have 
thin cotyledons
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• Monocot embryos have only one cotyledon
• Grasses, such as maize and wheat, have a 

specialized cotyledon called a scutellum
• The scutellum absorbs nutrients from the 

endosperm during germination
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• Two sheathes enclose the embryo of a grass seed: 
a coleoptile covering the young shoot and a 
coleorhiza covering the young root

• Both structures aid in soil penetration after 
germination
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Figure 38.8
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Seed Dormancy: An Adaptation for Tough 
Times
• The breaking of seed dormancy often requires a 

specific environmental cue
– For example, the seeds of desert plants only 

germinate after rainfall
– In areas where fires are common, intense heat or 

smoke may be required
– Where winters are harsh, a period of cold may be 

required prior to germination
– Some must pass through the digestive system of an 

animal before breaking dormancy
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• Seed dormancy increases the chances that 
germination will occur at a time and place most 
advantageous to the seedling

• Most seeds remain viable for one or two years after 
dormancy, but some last days while others are 
viable for centuries

65



Sporophyte Development from Seed to Mature 
Plant
• Seed dormancy breaks when environmental 

conditions are conducive for growth
• Germination is followed by growth of stems, leaves, 

and roots and eventually by flowering
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Seed Germination
• Germination depends on imbibition, the uptake of 

water due to the low water potential of the dry seed
• The radicle (embryonic root) emerges first; the 

developing root system anchors the plant and 
provides water for cell expansion

• Next, the shoot tip breaks through the soil surface
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• In many eudicots, a hook forms in the hypocotyl, 
and growth pushes the hook above ground

• Light causes the hook to straighten and pull the 
cotyledons and shoot tip up
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Figure 38.9
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• In some monocots, the coleoptile pushes up 
through the soil, creating a tunnel for the shoot tip 
to grow through
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Figure 38.9
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Animation: Seed Germination
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Growth and Flowering
• Flowers are typically synchronized to appear at a 

specific time of the year 
• This promotes outbreeding—reproduction between 

two genetically distinct individuals
• Flowering is triggered by a combination of 

environmental cues and internal signals
• A developmental switch from vegetative to 

reproductive growth occurs in the apical meristem
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Fruit Structure and Function
• A fruit is the mature ovary of a flower
• Fruit protects the enclosed seeds and aids in seed 

dispersal by wind or animals
• Fruit only develops in response to hormonal 

changes triggered by fertilization
• In some fruits, the ovary wall dries out at maturity; 

in others the ovary wall remains fleshy
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Figure 38.10
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• Fruits are classified based on their developmental 
origin 
– Simple fruits develop from a single or several fused 

carpels
– Aggregate fruits result from a single flower with 

multiple separate carpels
– Multiple fruits develop from a group of flowers 

called an inflorescence
– Accessory fruits contain other floral parts in 

addition to ovaries
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Figure 38.11
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• A fruit usually ripens at the same time that the 
seeds complete development

• In dry fruits, ripening involves aging and drying of 
tissues

• Fleshy fruits change from green to another 
contrasting color, and sugar is produced to attract 
animal dispersers
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Animation: Fruit Development
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• Fruit dispersal by wind, water, or animals ensures 
that seeds germinate away from the competitive 
influence of the parent plant
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Figure 38.12
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Figure 38.12 Exploring Fruit and Seed Dispersal
Dispersal by Water
• Some buoyant seeds and fruits can survive months 

or years at sea
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Figure 38.12
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Dispersal by Wind
• Winged fruits glide or spin through the air
• Tumbleweeds break off at the ground and tumble 

across the terrain, scattering their seeds
• Some fruits float through the air attached to 

umbrella like “parachutes” made of branched hairs 
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Figure 38.12
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Figure 38.12
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Figure 38.12
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Figure 38.12

88



Dispersal by Animals
• Some dry fruits are adapted to attach to the skin or 

fur of passing animals
• Others, are collected and buried in the 

underground caches of animals, such as squirrels
• Edible fruits are broken down in the digestive 

system of animals and the seeds are dispersed in 
their feces

• Some seeds have “food bodies” rich in fatty acids, 
amino acids, and sugars that are collected by ants
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Figure 38.12
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Figure 38.12
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Figure 38.12
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Figure 38.12

93



CONCEPT 38.2: Flowering plants reproduce 
sexually, asexually, or both
• Asexual reproduction produces offspring from a 

single parent without the fusion of egg and sperm 
• The offspring is a clone, genetically identical to the 

parent
• Asexual reproduction is common in angiosperms 

and other plants
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Mechanisms of Asexual Reproduction
• Many species reproduce asexually through 

fragmentation, separation of a parent plant into 
parts that develop into whole plants

• In other species, a parent plant’s root system gives 
rise to adventitious shoots that become separate 
shoot systems
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Figure 38.13
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• Apomixis, the asexual production of seeds from a 
diploid cell, has evolved in dandelions and some 
other plants

• These plants produce asexual clones but also have 
the advantage of seed dispersal
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Advantages and Disadvantages of Asexual and 
Sexual Reproduction
• Asexually reproducing plants do not require 

pollinators or nearby individuals of the same 
species to produce offspring

• All progeny are genetically identical to the parent, 
whereas sexually produced offspring only share 
half their DNA with each parent

• This can be beneficial to a successful plant in a 
stable environment
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• When asexual progeny arise from mature 
vegetative fragments, it is called vegetative 
reproduction

• These progeny are more resilient than the fragile 
seedlings that germinate from seeds

• Production of enormous numbers of seeds 
compensates for odds against individual survival
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• The lack of genetic variation among asexually 
producing plants makes them vulnerable to local 
extinction if there is an environmental change

• Sexual reproduction generates genetic variation 
that makes evolutionary adaptation possible

• Seed production also facilitates long distance 
dispersal to escape catastrophic environmental 
change
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• Some plants can self-fertilize to ensure that every 
ovule will develop into a seed

• However, this process of “selfing” reduces genetic 
diversity among offspring

• Many species have evolved mechanisms to 
prevent selfing

101



Mechanisms That Prevent Self-Fertilization
• Many angiosperms have mechanisms that make it 

difficult or impossible for a flower to self-fertilize
• Some species have staminate flowers (lacking 

carpels) and carpellate flowers (lacking stamens) 
on different individuals to prevent self-fertilization
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Figure 38.14a
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• Some species prevent self-fertilization by having 
stamens and carpels that mature at different times 

• Others spatially arrange the stamens are carpels to 
prevent contact between the stamens and the 
stigma 
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Figure 38.14b
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• Self-incompatibility, a plant’s ability to reject its 
own pollen or the pollen of close relatives, is the 
most common mechanism to avoid selfing

• Analogous to the animal immune response, cells of 
“self” can be distinguished from those of “nonself”

• In contrast, self-incompatibility in plants is rejection 
of self, whereas the animal immune response 
rejects nonself
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• Recognition of “self” pollen is based on S-genes, 
which can have dozens of alleles in a population

• Some plants reject pollen that have the same S-
gene allele that is present in their own stigma cells

• There are two types of self-incompatibility: 
gametophytic and sporophytic
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• In gametophytic self-incompatibility, the S-allele in 
the pollen genome governs blocking of fertilization

• By this mechanism, a pollen grain cannot fertilize 
eggs from a flower with the same S-allele as itself
– For example, an S1 pollen grain from an S1S2 flower 

cannot fertilize the eggs of an S1S2 flower, but it can 
fertilize the eggs of an S2S3 flower
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• In sporophytic self-incompatibility, fertilization is 
blocked by incompatibility between S-gene 
products of the sporophyte tissue

• A pollen grain cannot fertilize a flower that shares 
either of the S-alleles present in the parental 
sporophyte that produced the pollen grain
– For example, an S1 pollen grain from an S1S2 flower 

cannot fertilize the eggs of either an S1S2 flower or 
an S2S3 flower
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• Research on self-incompatibility has agricultural 
applications

• Hybridization of different genetic strains can help 
counter the loss of vigor resulting from inbreeding

• This process is hindered by the labor involved in 
mechanically removing anthers to prevent selfing

• Genetically engineering self-incompatibility into 
crop plants could help overcome this limitation
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Totipotency, Vegetative Reproduction, and 
Tissue Culture
• Totipotent cells, those that can divide and 

asexually generate a clone of the original organism, 
are common in plants 

• Humans have devised methods to clone plants 
using totipotent cells
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Vegetative Propagation and Grafting
• Vegetative reproduction that is facilitated or 

induced by humans is called vegetative 
propagation

• Many domesticated plants are asexually 
reproduced from plant fragments called cuttings

• A callus, a mass of dividing, undifferentiated 
totipotent cells, forms where a stem is cut and 
produces adventitious roots
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• The shoot of one plant can be grafted onto the 
stem of another plant to combine the best qualities 
of different species or varieties in one plant

• The stock provides the root system; the scion is 
the twig that is grafted onto the stock
– For example, a scion from a vine that produces 

superior wine grapes can be grafted onto the stock 
of a variety more resistant to soil pathogens
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Test-Tube Cloning and Related Techniques
• Plant biologists have adopted in vitro methods to 

create and clone novel plant varieties
• A callus of undifferentiated totipotent cells can 

sprout shoots and roots in response to plant 
hormones
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Figure 38.15
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• Some pathogenic viruses can be eliminated by 
excising virus-free apical meristems for tissue 
culture 

• Plant tissue culture also facilitates the production of 
genetically modified (GM) plants
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CONCEPT 38.3: People modify crops by 
breeding and genetic engineering
• Domestication of most crops occurred over a short 

period about 10,000 years ago through artificial 
selection by humans for favorable traits
– For example, maize has been artificially selected to 

have kernels permanently attached to the “cob,” 
which is protected by the leaves of the “husk” 

– It would quickly go extinct in the wild because it 
cannot spread its seeds
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Figure 38.16
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Plant Breeding
• Plant breeders search the world for wild or 

domesticated plants with desirable traits
• New, desirable traits can arise spontaneously 

through mutation, but natural mutation rates are 
slow

• Breeders can induce mutations for research rapidly 
by treating seeds or seedlings with radiation or 
chemicals
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• In traditional plant breeding, wild plants with 
beneficial traits are crossed with a domesticated 
variety

• Progeny are repeatedly selected for the favorable 
trait and crossed back to the domesticated variety 
to remove any traits undesirable for agriculture
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• Some breeding methods rely on hybridization 
between distant species of the same genus

• Often, the embryos are not viable, but can be 
rescued by removing them from the ovule and 
culturing them in vitro
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• Natural genetic modification of plants occurred long 
before humans began using artificial selection to 
modify crops
– For example, wheat evolved by natural hybridization 

between different species of grasses
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• The introduction of a transgene, a gene 
transferred from one organism to another, can also 
occur in nature
– For example, an early ancestor of modern sweet 

potato (Ipomea batatas) received a horizontal gene 
transfer from the soil bacterium Agrobacterium
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Plant Biotechnology and Genetic Engineering
• Plant biotechnology has two meanings

– In a general sense, it refers to innovations in the use 
of plants to make useful products 

– In a specific sense, it refers to use of genetically 
modified (GM) organisms in agriculture and industry

• CRISPR-Cas9 gene-editing technology is rapidly 
changing plant biology
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• Modern plant biotechnologists are not limited to the 
transfer of genes between closely related species

• With genetic engineering, genes can be directly 
transferred between species as distantly related as 
daffodils and rice, without the need for 
intermediates
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Reducing World Hunger and Malnutrition
• Global hunger currently affects nearly a billion 

people; food production will have to increase by 
40% per hectare by 2030 to feed our growing 
population 

• Plant biotechnology can help address this problem 
by increasing crop yields and the quality of food 
without expanding agricultural lands
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• One approach to increasing yields is to genetically 
modify crops to resist feeding by pests

• Some transgenic crops have been developed to 
produce the Bt toxin, which is toxic to insect pests 
but not vertebrates
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Figure 38.17
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• Biofortification, improving the nutritional quality of 
plants, is another strategy to combat world hunger
– For example, “Golden Rice” is a transgenic variety 

being developed to address vitamin A deficiencies 
among the world’s poor

– In 2018, Golden Rice received positive food safety 
evaluations from the governments of Canada, New 
Zealand, and the United States
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• Cassava, a starchy root crop, is a major source of 
carbohydrates for 800 million of the world’s poor

• Transgenic, biofortified cassava has been 
developed with increased levels of iron and beta-
carotene and reduced cyanide-producing 
chemicals
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Figure 38.18
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• Engineering plants with enhanced resistance to 
disease is another strategy for increasing crop 
yields
– For example, transgenic papaya was developed to 

be resistant to a ringspot virus, thereby saving the 
papaya industry
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• Some transgenic crops are resistant to the 
herbicide glyphosate

• Overuse has resulted in the evolution of glyphosate 
resistance in many weed species

• Glyphosate may also have negative effects on the 
health of humans and livestock by interfering with 
beneficial gut bacteria
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Reducing Fossil Fuel Dependency
• Burning fossil fuels contributes to global warming 

by releasing the greenhouse gas CO2

• Biofuels—fuels derived from living biomass—could 
meet much of the world’s energy needs in the 
future 

• Biomass is the total mass of organic matter in a 
group of organisms in a particular habitat 
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• Biofuels can be produced by rapidly growing crops, 
such as switchgrass and poplar

• These crops take up CO2 during photosynthesis to 
balance out that which is released when they are 
burned, creating a carbon neutral cycle
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• Plant biomass is not burned directly in biofuels; 
polymers in the cell walls, such as cellulose, are 
broken down into sugars by enzymatic reactions

• The sugars are fermented into alcohol and distilled 
to yield biofuels

• Genetically engineering plant cell walls could 
increase the efficiency of this process
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• Some biologists are concerned about risks of 
releasing GM organisms (GMOs) into the 
environment

• One concern is that the introduction of novel 
organisms into the biosphere is an unstoppable 
“experiment”
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Issues of Human Health
• Some biologists are concerned about risks of 

releasing GM organisms (GMOs) into the 
environment

• One concern is that the introduction of novel 
organisms into the biosphere is an unstoppable 
“experiment”
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• Some GMOs have health benefits
– For example, maize that produces the Bt toxin has 

reduced infection by Fusarium, a fungus that 
produces a cancer-causing toxin

– Bt maize contains 90% less of the cancer-causing 
toxin than non-Bt corn
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• Widespread adoption of Bt cotton in India has led to 
a 41% decrease in insecticide use and an 80% 
reduction in acute poisoning cases in farmers
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Possible Effects on Nontarget Organisms
• Many ecologists are concerned that GM crops may 

have unforeseen effects on nontarget organisms
– A study showing that pollen from Bt maize had 

negative effects on monarch butterfly larvae has 
been discredited

– In fact, spraying chemicals on non-Bt maize is much 
more harmful to monarch butterflies than Bt maize 
production
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Addressing the Problem of Transgene Escape
• Perhaps the most serious concern is the possibility 

of introduced genes escaping into related weeds 
through crop-to-weed hybridization

• This could result in “superweeds” that would be 
resistant to many herbicides
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• Efforts are underway to prevent this by introducing
– Male sterility
– Apomixis
– Transgenes into chloroplast DNA (not transferred by 

pollen)
– Genetic modification to prevent flowers from 

opening, forcing strict self-pollination
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Figure 38.UN01
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Figure 38.UN01
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Figure 38.UN03
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Figure 38.UN04
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