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Vascular Plants



What causes the movement of water, minerals, 
and sugars in most vascular plants?
• Water and minerals are pulled up from the roots by 

negative pressure generated by evaporation from 
leaves

• Sugars are pushed by positive pressure from 
where they are produced or stored to where they 
are needed
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Figure 36.1a
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Figure 36.1b
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CONCEPT 36.1: Adaptations for acquiring 
resources were key steps in the evolution of 
vascular plants

• Algal ancestors of plants absorbed water, minerals, 
and C O2 directly from the surrounding water

• Early nonvascular land plants lived in shallow water 
and had aerial shoots

• Natural selection favored taller plants with flat 
appendages, multicellular branching roots, and 
efficient transport
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• Long distance transport of water, minerals and 
sugar was possible after the evolution of xylem and 
phloem 
– Xylem transports water and minerals from roots to 

shoots
– Phloem transports photosynthetic products from 

where they are made to where they are needed
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Figure 36.2
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Shoot Architecture and Light Capture
• Stems transport water and nutrients and provide 

structural support for leaves
• Shoot length and branching pattern affect light 

capture; taller plants with more branches are better 
able access sunlight for photosynthesis

• There is a trade-off between height and branching; 
the more energy invested into branching, the less 
energy available for growth in height
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• There is generally a positive correlation between 
water availability and leaf size

• The largest leaves are found in tropical rain forests, 
whereas the smallest are usually found in dry or 
very cold environments such as deserts 
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• Phyllotaxy, the arrangement of leaves on a stem, 
is a species-specific trait, important for light capture
– Alternate, or spiral, phyllotaxy is when a species has 

one leaf per node
– Opposite is when there are two leaves per node
– Whorled is when there are more than two leaves per 

node
• Most angiosperms have alternate phyllotaxy with 

leaves arranged in a spiral at 137.5º angles
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Figure 36.3
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• The total area of the leafy portions of all the plants 
in a community affects the productivity of each 
plant

• The rate of photosynthesis can drop below that of 
respiration in the lower, shaded leaves

• These nonproductive leaves undergo programmed 
cell death and drop, a process called self-pruning
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• Plants that reduce self-shading capture more light
• Leaf area index, the ratio of total upper leaf surface 

of a plant or crop divided by the surface area of 
land on which it grows

• Leaf area indexes higher than 7 result in shading to 
the point that self-pruning occurs
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Figure 36.4
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• Leaf orientation affects light absorption
• In low-light conditions, horizontal leaves capture 

more sunlight
• In sunny conditions, vertical leaves are less 

damaged by sun and allow light to reach lower 
leaves
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The Photosynthesis–Water Loss Compromise
• Stomatal pores are necessary to allow diffusion of 

C O2 into the photosynthetic tissues of leaves
• Over 90% of the water lost by plants is by 

evaporation from stomatal pores
• Shoot adaptations represent compromises between 

enhancing photosynthesis and minimizing water 
loss
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Root Architecture and Acquisition of Water and 
Minerals
• Roots can respond to local changes in soil 

conditions to maximize nutrient uptake
– In pockets of soil with high nitrate availability, roots 

branch extensively and increase production of 
proteins involved in nitrate transport and assimilation 

– Roots extend straight through low nitrate pockets 
instead of branching within them
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• Roots from the same plant are less competitive with 
each other than with roots from different plants of 
the same species
– For example, buffalo grass cuttings develop fewer, 

shorter roots in the presence of cuttings from the 
same plant than those from another buffalo grass 
plant
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• Roots and the hyphae of soil fungi form mutualistic 
associations called mycorrhizae

• Mycorrhizal fungi increase the surface area for 
absorbing water and minerals, especially 
phosphate

• Mutualisms with fungi helped plants colonize land
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CONCEPT 36.2: Different mechanisms transport 
substances over short or long distances
• Plants have two major transport pathways: the 

apoplast and the symplast
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The Apoplast and Symplast: Transport 
Continuums
• The apoplast consists of everything external to the 

plasma membranes of living cells
– It includes the cell walls, extracellular spaces, and 

the interior of dead cells such as vessel elements 
and tracheids

• The symplast consists of the cytosol of all the 
living cells in a plant, as well as the plasmodesmata
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• Three transport routes for water and solutes 
include
– The apoplastic route, outside cells through cell walls 

and extracellular spaces
– The symplastic route, through the cytosol after 

crossing one plasma membrane to enter a cell
– The transmembrane route, where water and solutes 

repeatedly cross plasma membranes as they pass 
from cell to cell
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Figure 36.5
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Short-Distance Transport of Solutes Across 
Plasma Membranes
• Plasma membrane permeability controls short-

distance movement of substances 
• Plants have the same types of pumps and transport 

proteins as animals, with some specific differences
– In plants, membrane potential is established through 

pumping H+ by proton pumps
– In animals, membrane potential is established 

through pumping Na+ by sodium-potassium pumps
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Figure 36.6
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• Cells use the energy of electrochemical gradients 
and membrane potential to drive the active 
transport of other solutes 
– In plant cells, H+ gradients are used to cotransport 

sucrose and nitrate (N O3
-) 

– In animal cells, Na+ is typically cotransported rather 
than H+ 
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• Plant cell membranes have ion channels that allow 
only certain ions to pass
– For example, potassium ion channels in guard cells 

facilitate opening and closing of stomata
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Short-Distance Transport of Water Across 
Plasma Membranes
• Osmosis is the diffusion of free water—water not 

bound by solutes or surfaces—across a cell 
membrane

• Water potential is the physical property that 
predicts the direction of water flow across a 
membrane

• The effects of solute concentration and physical 
pressure are included in water potential 
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• Free water flows from regions of higher water 
potential to regions of lower water potential

• Potential refers to water’s capacity to perform work
– For example, water moving into a cell from a solution 

of higher water potential causes the cell to expand 
and exert force on its surroundings 
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• Water potential is denoted by Ψ and measured in a 
unit of pressure called the megapascal (M P a)

• Ψ = 0 M P a for pure water at sea level and room 
temperature

• The internal pressure of a living plant cell is about 
0.5 M P a, or about twice the air pressure in a car 
tire 
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How Solutes and Pressure Affect Water 
Potential
• Solute concentration and physical pressure are the 

major determinants of water potential in plants
• This is expressed by the water potential equation:

Ψ = ΨS + ΨP, where
– Ψ = water potential
– ΨS = solute potential
– ΨP = pressure potential
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• The solute potential (ΨS), or osmotic potential, of 
a solution is directly proportional to its molarity

• The ΨS of pure water is 0
• As solute concentration increases, ΨS becomes 

more negative and Ψ is reduced
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• Pressure potential (ΨP) is the physical pressure 
on a solution

• Pressure potential can be positive or negative
– For example, solution withdrawn by a syringe is 

under negative pressure; it is under positive 
pressure when it is being expelled by the syringe

• The water in living cells is usually under positive 
pressure
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• The protoplast is the living part of the cell, which 
also includes the plasma membrane

• Turgor pressure is the positive pressure exerted 
by the protoplast against the cell wall
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Water Movement Across Plant Cell Membranes
• Water potential affects uptake and loss of water by 

plant cells
• If a flaccid (limp) cell is placed in an environment 

with a higher solute concentration, the cell will lose 
water and undergo plasmolysis

• Plasmolysis occurs when the protoplast shrinks 
and pulls away from the cell wall
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Figure 36.7
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Video: Plasmolysis
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• If a flaccid cell is placed in a solution with a lower 
solute concentration, the cell will gain water and 
become turgid
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Figure 36.7
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Video: Turgid Elodea
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• Turgor loss in plants causes wilting, which can be 
reversed when the plant is watered
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Figure 36.UN01
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Aquaporins: Facilitating Diffusion of Water
• Water molecules are small enough to diffuse 

directly across the plasma membrane, but the rate 
of diffusion is too fast to be completely unaided

• Aquaporins are transport proteins in the cell 
membrane that facilitate the passage of water

• Opening and closing of aquaporins affect the rate 
of osmotic water movement across the membrane
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Long-Distance Transport: The Role of Bulk Flow
• Efficient long-distance transport of fluid requires 

bulk flow, the movement of a fluid driven by a 
pressure gradient

• Water and solutes move together through the 
tracheids and vessel elements of the xylem and the 
sieve-tube elements of the phloem

• The branching veins in leaves ensure that all cells 
are within a few cells of the vascular tissue
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Figure 36.8
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• Bulk flow is enhanced by the structural adaptations 
of xylem and phloem cells
– Mature tracheids and vessel elements have no 

cytoplasm, whereas sieve-tube elements have 
cytoplasm, but contain few organelles

– Perforation plates connect vessel elements, and 
porous sieve plates connect sieve-tube elements
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• Bulk flow is enhanced by the structural adaptations 
of xylem and phloem cells
– Mature tracheids and vessel elements have no 

cytoplasm, whereas sieve-tube elements have 
cytoplasm, but contain few organelles

– Perforation plates connect vessel elements, and 
porous sieve plates connect sieve-tube elements
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• Diffusion, active transport, and bulk flow act 
together to transport resources throughout the plant
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CONCEPT 36.3: Transpiration drives the 
transport of water and minerals from roots to 
shoots via the xylem

• Plants move large volumes of water from their roots 
to shoots every day
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Absorption of Water and Minerals by Root Cells
• Most water and mineral absorption occurs near root 

tips, where root hairs are located and the epidermis 
is permeable to water

• Root hairs account for much of the surface area of 
roots

• After soil solution enters the roots, the extensive 
surface area of cortical cell membranes enhances 
uptake of water and selected minerals

53



• Active transport enables essential minerals to 
accumulate at much higher concentrations in roots 
compared to the surrounding soil 
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Transport of Water and Minerals into the Xylem
• The endodermis is the innermost layer of cells in 

the root cortex
• It surrounds the vascular cylinder and is the last 

checkpoint for selective passage of minerals from 
the cortex into the vascular tissue
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• The waxy Casparian strip of the endodermal wall 
blocks apoplastic transfer of minerals from the 
cortex to the vascular cylinder

• Water and minerals in the apoplast must cross the 
plasma membrane of an endodermal cell to enter 
the vascular cylinder

• The selectively permeable membrane prevents the 
uptake of toxins or unneeded materials
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• The endodermis regulates and transports needed 
minerals from the soil into the xylem

• Endodermal cells discharge water and minerals 
from their protoplasts into their own cell walls

• Diffusion and active transport are involved in this 
movement from symplast to apoplast

• Once in the apoplast, water and minerals can enter 
the tracheids and vessel elements
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Figure 36.9
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Figure Walkthrough BioFlix® Animation: Water 
Transport from Soil into Roots
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Bulk Flow Transport via the Xylem
• Xylem sap containing water and dissolved 

minerals is transported from roots to leaves by bulk 
flow

• Peak velocities in transport of xylem sap can range 
from 15 to 45 m/hr for some trees

• The transport of xylem sap involves transpiration, 
the evaporation of water from a plant’s surface

• Transpired water is replaced as water travels up 
from the roots
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Pushing Xylem Sap: Root Pressure 
• At night, root cells lower water potential by actively 

pumping mineral ions into the xylem 
• Water flows in from the root cortex, generating root 

pressure, a push of xylem sap
• Root pressure sometimes results in guttation, the 

exudation of water droplets on tips or edges of 
leaves
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Figure 36.10
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• Positive root pressure is too weak to overcome the 
gravitational force of the water column in the xylem

• In most plants, root pressure is only a minor 
mechanism driving the ascent of xylem sap

• Xylem sap is mainly pulled up, rather than pushed 
from below by root pressure
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Pulling Xylem Sap: The Cohesion-Tension 
Hypothesis
• According to the cohesion-tension hypothesis, 

transpiration provides the pull for the ascent of 
xylem sap and water cohesion transmits this pull 
along the entire length of the xylem from shoots to 
roots

• Xylem sap is normally under negative pressure, or 
tension
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Transpirational Pull
• Water vapor in the air spaces of a leaf diffuses 

down its water potential gradient and exits the leaf 
via stomata

• As water evaporates, the air-water interface 
retreats into the mesophyll cell walls

• The surface tension of water at the air-water 
interface creates a negative pressure potential
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• Negative pressure potential lowers water potential 
• Water molecules are pulled from more hydrated 

areas of the leaf by the negative pressure potential 
created at the air-water interface

• The cohesion of water molecules transfers the 
pulling forces to the water in the xylem

• The transpirational pull on xylem sap is transmitted 
all the way from the leaves to the roots
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Figure 36.11
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BioFlix® Animation: Transpiration
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Figure 36.12
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BioFlix® Animation: Water Transport in Plants
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Cohesion and Adhesion in the Ascent of Xylem Sap
• Water molecules are attracted to each other 

through cohesion
• Water molecules exiting the xylem tug on adjacent 

water molecules down the column
• Adhesion of water molecules to xylem cell walls 

helps offset the force of gravity
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• Thick secondary walls prevent vessel elements and 
tracheids from collapsing under negative pressure

• Drought stress or freezing can cause a break in the 
chain of water molecules through cavitation, the 
formation of a water vapor pocket
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• Xylem sap transport can often continue after 
cavitation by
– moving between adjacent xylem cells through pits
– moving from xylem to phloem tissue and back again
– repairing the cavitation
– adding new xylem during secondary growth
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Xylem Sap Ascent by Bulk Flow: A Review
• The movement of xylem sap against gravity is 

maintained by the cohesion-tension mechanism
• Bulk flow is driven by a water potential difference at 

opposite ends of xylem tissue
• Bulk flow is driven by transpiration and does not 

require energy from the plant; like photosynthesis, 
it is solar powered
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• Bulk flow differs from diffusion:
– It is driven by differences in pressure potential, not 

solute potential
– It occurs in hollow dead cells, not across the 

membranes of living cells
– It moves the entire solution, not just water or solutes
– It is much faster
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CONCEPT 36.4: The rate of transpiration is 
regulated by stomata
• Leaves generally have large surface areas and 

high surface-to-volume ratios
• These characteristics increase rates of both 

photosynthesis and water loss
• Guard cells balance water conservation with the 

need for gas exchange by opening and closing 
stomata
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Stomata: Major Pathways for Water Loss
• About 95% of the water a plant loses escapes 

through stomata; water loss is limited elsewhere on 
leaves by the waxy cuticle

• Each stoma is flanked by a pair of guard cells, 
which control the diameter of the stoma by 
changing shape

• The amount of water lost per leaf depends largely 
on stomatal density and average stoma size
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Figure 36.13
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• Stomatal density is under both genetic and 
environmental control

• Shade-tolerant species have evolved lower 
stomatal densities by natural selection because C 
O2 uptake doesn’t limit photosynthesis in shady 
conditions

• Low C O2 levels during leaf development can result 
in increased stomatal densities in many species
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• Measuring stomatal density in leaf fossils provides 
insight into atmospheric C O2 levels in past climates

• Decreases in stomatal density in British woodland 
plants since 1927 are consistent with increases in 
atmospheric C O 2 levels during the late 1900s
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Mechanisms of Stomatal Opening and Closing
• Changes in turgor pressure open and close 

stomata
– When turgid, guard cells bow outward and the 

pore between them opens
– When flaccid, guard cells become less bowed 

and the pore closes
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Figure 36.14
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• Changes in turgor pressure result from absorption 
and loss of potassium ions (K+) by the guard cells

• Proton pumps generate the membrane potential 
required to move K+ across the plasma membrane
– Guard cells become turgid on absorption of K+ and 

water enters by osmosis, causing the stomata to 
open

– Guard cells become flaccid when K+ leaves the 
guard cells, which leads to an osmotic loss of water 
and stomata close
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Figure 36.14
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Stimuli for Stomatal Opening and Closing
• Generally, stomata open during the day and close 

at night to minimize water loss 
• Stomatal opening at dawn is triggered by

– Light
– C O2 depletion
– An internal “clock” in guard cells

• Plants, like all eukaryotic organisms, have internal 
clocks; circadian rhythms are 24-hour cycles 
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• Drought stress can cause stomata to close during 
the daytime

• The hormone abscisic acid (A B A) is produced in 
response to water deficiency; it signals guard cells 
to close the stomata
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Effects of Transpiration on Wilting and Leaf 
Temperature
• Sunny, warm, dry, and windy conditions cause 

transpiration rates to increase
• If uptake and transport are not sufficient to replace 

the lost water, the plant will wilt
• Transpiration also protects leaves from overheating 

by lowering the internal temperature through 
evaporative cooling
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Adaptations That Reduce Evaporative Water 
Loss
• Water availability is a major determinant of plant 

productivity 
• Freely available water is required to keep stomata 

open for uptake of C O2

• Xerophytes are plants adapted to arid climates
• Some xerophytes avoid drying out by completing 

their entire life cycle during the rainy season
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• Other xerophytes have morphological or 
physiological adaptations to reduce water loss
– Fleshy stems for water storage 
– Highly reduced leaves and photosynthetic stems 
– Crassulacean acid metabolism (C A M) in which 

stomata close during the day and open at night for 
gas exchange
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Figure 36.15
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CONCEPT 36.5: Sugars are transported from 
sources to sinks via the phloem’
• Sugars are often transported from mature leaves, 

where they are produced to lower parts of the plant, 
where they are needed for energy or growth

• The products of photosynthesis are transported 
through phloem by the process of translocation
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Movement from Sugar Sources to Sugar Sinks
• In angiosperms, phloem sap, an aqueous solution 

high in sucrose, travels from a sugar source to a 
sugar sink through sieve-tube elements
– A sugar source is an organ that is a net producer of 

sugar, such as mature leaves
– A sugar sink is an organ that is a net consumer or 

depository of sugar, such as roots, buds, and fruits
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• A storage organ may be a sugar source or a sink, 
depending on the season
– When stockpiling carbohydrates in summer, it is a 

sugar sink
– In spring, it becomes a sugar source, supplying 

sugar to growing shoot tips 
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Animation: Translocation of Phloem Sap in 
Spring
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Animation: Translocation of Phloem Sap in 
Summer
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• Sinks usually receive sugar from the nearest 
sources

• Sugar is loaded into companion cells and sieve-
tube elements before being exported to sinks

• Whether sugar moves only by symplastic or by both 
symplastic and apoplastic pathways is species 
dependent
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Figure 36.16
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• Phloem loading often requires active transport 
because sugar is more concentrated in sieve-tube 
elements and companions cells than source cells

• Proton pumping and cotransport of sucrose and H+

enable sucrose to accumulate in the phloem
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Figure 36.16
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• At the sink, sugar molecules diffuse from the 
phloem to sink tissues and water follows by 
osmosis

• Sugar concentration is lower in the sink than in the 
sieve tube because unloaded sugar is either 
consumed or converted to polymers such as starch
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Bulk Flow by Positive Pressure: The 
Mechanism of Translocation in Angiosperms
• Phloem sap moves through the sieve tubes of 

angiosperms by bulk flow driven by positive 
pressure, called pressure flow

• Phloem sap flows from sources, where pressure is 
high, to sinks, where pressure is low
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Figure 36.17
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Animation: Phloem Transport
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• The pressure flow hypothesis predicts that phloem 
sap near sugar sources should have higher sugar 
content than phloem sap near sinks
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Figure 36.18
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• Self-thinning, the dropping of sugar sinks such as 
flowers, seeds, or fruits, occurs when there are 
more sugar sinks than the sources can support
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CONCEPT 36.6: The symplast is highly dynamic
• As a living tissue, the symplast is largely 

responsible for dynamic changes in plant transport 
processes

• Plant transport changes during development
– For example, a leaf will transition from a sugar sink 

to spend most of its life as a sugar source
– Water stress can activate signal transduction 

pathways that alter membrane transport 
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Changes in Plasmodesmatal Number and Pore 
Size
• Plasmodesmata are highly dynamic

– They can open or close in response to turgor 
pressure, cytosolic Ca2+ levels, or cytosolic pH

– They can close or be eliminated with leaf transition 
from sink to source
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• Pore sizes of plasmodesmata are approximately 
2.5 nm

• Plant cells can regulate pore size as part of a 
communication network

• Plant viruses can cause plasmodesmata to dilate 
as much as 10 nm, allowing large viral RNA to pass 
between cells
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Figure 36.19
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Phloem: An Information Superhighway
• Phloem is a “superhighway” for systemic transport 

of macromolecules and viruses
• Systemic communication through the phloem helps 

integrate functions of the whole plant
– For example, in a defense response to local 

infection, chemical signals travel through the phloem 
and activate defense genes in noninfected tissues
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Electrical Signaling in the Phloem
• The phloem allows for rapid electrical 

communication between widely separated organs
– For example, it transports electrical signals in rapid 

leaf movements in the sensitive plant (Mimosa 
pudica)
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Figure 36.UN02
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Figure 36.UN03
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Figure 36.UN03
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