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How does structure fit function in vascular 
plants?
• Natural selection has molded plant structure to 

support function at the organ, tissue, and cellular 
levels
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CONCEPT 35.1: Plants have a hierarchical 
organization consisting of organs, tissues, and 
cells
• Plant organs are composed of tissues, which in turn 

are composed of cells
• A cell is the fundamental unit of life
• A tissue is a group of cells consisting of one or 

more cell types that together perform a specialized 
function

• An organ consists of several types of tissues that 
together carry out particular functions
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Vascular Plant Organs: Roots, Stems, and 
Leaves
• The basic morphology of vascular plants reflects 

adaptations to draw nutrients from above and 
below the ground

• Plants take up water and minerals from below 
ground

• Plants take up CO2 and light from above ground
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• Three basic organs evolved to facilitate efficient 
resource acquisition: roots, stems, and leaves

• They are organized into a root system and a 
shoot system

• The shoot system includes stems and leaves
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Figure 35.2
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• Roots rely on sugar produced by photosynthesis in 
the shoot system

• Shoots rely on water and minerals absorbed by the 
root system
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Roots
• A root is an organ with important functions:

– Anchoring the plant
– Absorbing minerals and water
– Storing carbohydrates

• The primary root is the first to emerge from the 
seed 

• Lateral roots branch off from the primary root 
improving anchorage and water absorption
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• Tall plants with large shoot masses generally have 
a taproot system

• The taproot usually develops from the primary root 
and functions in anchoring the plant in the soil 

• Absorption primarily occurs in the tips of the lateral 
roots
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• Small or trailing vascular plants generally have a 
fibrous root system that spreads out like a thick mat 
below the soil surface 

• The primary root dies without forming a taproot
• Adventitious roots arise from the stem and give rise 

to many branching lateral roots
• Fibrous root systems prevent soil erosion by 

holding topsoil in place 
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• Absorption of water and minerals typically occurs 
through the root hairs that grow near the root tips

• Root hairs, finger-like extensions of epidermal 
cells, increase the absorptive surface of the root

• Mycorrhizal associations, symbiotic interactions 
with soil fungi, increase mineral absorption in most 
plants
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Figure 35.3
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Video: Root Growth in a Radish Seedling
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• Many plants have root adaptations with specialized 
functions 
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Figure 35.4

17



Stems
• A stem is a plant organ bearing leaves and buds
• Stems consist of an alternating system of nodes 

and internodes
• Nodes are the points at which leaves are attached
• Internodes are the stem segments between nodes
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• The growing shoot tip, or apical bud, causes 
elongation of a young shoot

• An axillary bud is a structure that has the potential 
to form a lateral branch, thorn, or flower
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• The primary function of the stem is to elongate and 
orient the shoot to maximize photosynthesis

• Many plants have modified stems that perform 
alternate functions
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Figure 35.5
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Leaves
• The leaf is the main photosynthetic organ of most 

vascular plants
• Leaves intercept light, exchange gases, dissipate 

heat, and defend against herbivores and pathogens
• A leaf generally consists of a flattened blade and a 

stalk, the petiole, which joins the leaf to the stem
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• Monocots and eudicots differ in the arrangement of 
veins, the vascular tissue of leaves
– Most monocots have parallel veins
– Most eudicots have branching veins

• Leaf shape, arrangement of veins, and spatial 
pattern of leaves can help with plant identification

• Leaf shape may be simple or compound
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Figure 35.6
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• Most leaves are specialized for photosynthesis
• Some plant species have evolved modified leaves 

that serve additional functions
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Figure 35.7
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Dermal, Vascular, and Ground Tissues
• Roots, stems, and leaves are composed of three 

tissue types: dermal, vascular, and ground tissues
• Each of these tissue types forms a tissue system 

that is continuous throughout the plant
• The characteristics of the tissues and their spatial 

relationships vary in different organs
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Figure 35.8
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• Dermal tissue serves as a protective outer coating
• In nonwoody plants, it is usually a single tissue 

layer called the epidermis
• A waxy cuticle covers the epidermis and protects 

leaves and most stems from water loss
• A protective layer called the periderm replaces the 

epidermis in older regions of woody stems and 
roots
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• Guard cells are specialized dermal cells that 
facilitate gas exchange in shoots

• Trichomes are hairlike outgrowths of epidermal 
cells that help reduce water loss, reflect light, and 
defend against insects
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Figure 35.9
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• Vascular tissue facilitates the transport of 
materials through the plant and provides 
mechanical support

• Vascular tissue includes xylem and phloem
– Xylem conducts water and dissolved minerals 

upward from roots into the shoots
– Phloem transports sugars from where they are 

made (primarily leaves) to actively growing parts of 
the plant or storage structures
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• The vascular tissue of a root or stem is collectively 
called the stele

• Arrangement of the stele varies by species and 
organ 

• In angiosperms, the stele of the root is a solid 
central vascular cylinder of xylem and phloem

• The stele of angiosperm stems and leaves is 
divided into vascular bundles, which are separate 
strands of xylem and phloem
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• Tissue that are neither dermal nor vascular is 
ground tissue

• Ground tissue internal to the vascular tissue is pith; 
ground tissue outside the vascular tissue is cortex

• Ground tissue includes cells specialized for 
storage, photosynthesis, support, and short-
distance transport
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Common Types of Plant Cells 
• Plant cells undergo cell differentiation; that is, 

specialization in structure and function, during 
development

• The structural adaptations of various types of plant 
cells make their specific functions possible
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• The major types of plant cells are
– Parenchyma
– Collenchyma
– Sclerenchyma
– Water-conducting cells of the xylem
– Sugar-conducting cells of the phloem
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Parenchyma Cells
• Mature parenchyma cells

– Have thin and flexible primary walls
– Generally lack secondary walls
– Have a large central vacuole
– Perform most of the metabolic functions
– Retain the ability to divide and differentiate
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Figure 35.10a
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Collenchyma Cells
• Collenchyma cells are grouped in strands and 

help support young parts of the plant shoot
• They have unevenly thickened primary cell walls
• They are living at maturity
• These cells provide flexible support without 

restraining growth
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Figure 35.10b 
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Sclerenchyma Cells
• Sclerenchyma cells are rigid cells with secondary 

cell walls containing lignin, a strengthening 
polymer, for support

• Many are dead at maturity; the rigid cell walls 
remain to support the plant 
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• Two types of sclerenchyma cells are specialized 
entirely for support and strengthening
– Sclereids are boxy and irregular in shape and have 

very thick, lignified secondary walls
– Long, slender fibers are tapered and grouped in 

strands 
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Figure 35.10c
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Water-Conducting Cells of the Xylem
• Water-conducting cells that are dead at maturity 

have lignified secondary cell walls for plant support
• Tracheids are long, thin, tapered cells found in the 

xylem of all vascular plants
• Water moves between tracheids through pits, thin 

regions lacking secondary cell wall
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• Vessel elements, wider, shorter, and thinner than 
tracheids, align end to end to form long pipes called 
vessels

• The end walls have perforation plates that allow 
water to flow freely through the vessels

• Most angiosperms, and a few gymnosperms and 
seedless vascular plants have vessel elements
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Figure 35.10d

Water-Conducting Cells of the Xylem
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Sugar-Conducting Cells of the Phloem
• Sugar-conducting cells of the phloem are alive at 

maturity, but lack a nucleus, ribosomes, vacuole, 
and elements of the cytoskeleton

• In seedless vascular plants and gymnosperms, 
sugars are transported through sieve cells

• In angiosperms, sugars are transported in sieve 
tubes, chains of cells called sieve-tube elements
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• Sieve plates are porous end walls between sieve-
tube elements that allow fluid to flow between cells 

• Each sieve-tube element is connected to a 
companion cell by numerous plasmodesmata

• The nucleus and ribosomes of the companion cell 
also serve the sieve-tube element
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Figure 35.10e

Sugar-Conducting Cells of the Phloem
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BioFlix® Animation: Tour of a Plant Cell
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CONCEPT 35.2: Different meristems generate 
new cells for primary and secondary growth
• A plant can grow throughout its life; this is called 

indeterminate growth
• Continuous growth is possible due to the activity of 

meristems, undifferentiated tissues composed of 
dividing cells

• Most animals and some plant organs cease to grow 
at a certain size; this is called determinate growth
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Figure 35.11a
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Figure 35.11b
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Figure 35.11c
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Animation: Primary and Secondary Growth
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• There are two main types of meristems: apical 
meristems and lateral meristems

• Apical meristems are located at the tips of roots 
and shoots

• Cells of the apical meristems allow for elongation of 
shoots and roots, a process called primary growth
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• Lateral meristems allow the stems and roots of 
woody plants to grow in circumference, a process 
called secondary growth

• There are two lateral meristems
– Vascular cambium adds vascular tissue called 

secondary xylem (wood) and secondary phloem
– Cork cambium replaces the epidermis with thicker, 

tougher periderm
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• Cells in the apical and lateral meristems divide 
frequently during the growing season

• Initials, also called stem cells, are new cells that 
remain in the meristem and produce more cells

• Other new cells differentiate and are incorporated 
into tissues and organs
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• Cells displaced from the meristem give rise to three 
tissues called primary meristems that will produce 
mature tissues
– The protoderm produces dermal tissue
– The ground meristem produces ground tissue
– The procambium produces vascular tissue
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• Lateral meristems in woody plants also have stem 
cells, which give rise to secondary growth

• Each year, primary growth extends woody shoots, 
and secondary growth increases the diameter of 
parts formed in the previous years
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Figure 35.12
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• Flowering plants can be categorized based on the 
length of their life cycle
– Annuals complete their life cycle in a year or less
– Biennials require two growing seasons
– Perennials live for many years
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CONCEPT 35.3: Primary growth lengthens roots 
and shoots
• Primary growth arises from cells produced by apical 

meristems and elongates roots and shoots
• In herbaceous plants, most of the plant consists of 

primary growth; in woody plants only new, non-
woody parts represent primary growth
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Primary Growth of Roots
• A root cap covers the root tip to protect the apical 

meristem and polysaccharide slime lubricates the 
passage as the root pushes through soil

• Growth occurs just behind the tip, in three zones:
– Zone of cell division
– Zone of elongation
– Zone of differentiation, or maturation
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Figure 35.13
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Video: Root Growth in a Radish Seedling
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• The primary growth of roots produces the 
epidermis, ground tissue, and vascular tissue

• The protoderm is the outermost primary meristem; 
it gives rise to the epidermis

• Root hairs, epidermal cells modified for absorption, 
make up 70–90% of the total root surface area
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• Between the protoderm and procambium is the 
ground meristem, which produces the ground 
tissue 

• Ground tissue, mostly parenchyma cells, makes up 
the region between the vascular tissue and the 
epidermis called the cortex

• The innermost layer of the cortex is called the 
endodermis; it regulates passage into and out of 
the vascular cylinder
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• The innermost primary meristem is the 
procambium; it gives rise to the central vascular 
cylinder

• The vascular cylinder has a solid core of xylem and 
phloem surrounded by a cell layer called the 
pericycle

69



• In most eudicots, the xylem has a starlike
appearance in cross section with phloem between 
the “arms”

• In many monocots, a core of parenchyma cells is 
surrounded by alternating rings of xylem and 
phloem
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Figure 35.14
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Animation: Root Cross Sections
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• Lateral (branch) roots arise from the pericycle and 
destructively push through the outer tissues

• Branching is a form of primary growth
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Figure 35.15
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Primary Growth of Shoots
• A shoot apical meristem is a dome-shaped mass of 

dividing cells at the shoot tip
• The leaves of the apical bud protect the meristem
• Axillary buds develop from meristematic cells left at 

the bases of leaf primordia
• The shoot apical meristem gives rise to three 

primary meristems—the protoderm, ground 
meristem and procambium
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Figure 35.16
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• Axillary buds are kept dormant by chemical 
communication from the apical bud

• The closer an axillary bud is to the active apical 
bud, the more inhibited it is

• Axillary buds are released from this apical 
dominance if the shoot tip is removed or shaded

• Lateral shoots emerge from axillary buds that have 
been released from dormancy
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Stem Growth and Anatomy
• The stem is covered by the epidermis and a waxy 

cuticle
• The ground tissue is composed primarily of 

parenchyma cells
• Collenchyma and sclerenchyma cells strengthen 

and support the stem 
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• Unlike lateral roots, emerging shoots do not 
damage stem tissues

• Lateral shoots arise from axillary bud meristems on 
the stem surface
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• In most eudicots, the vascular tissue consists of 
vascular bundles arranged in a ring

• In most monocot stems, the vascular bundles are 
scattered throughout the ground tissue
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Figure 35.17
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Animation: Stem Cross Sections
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Leaf Growth and Anatomy
• Leaves develop from leaf primordia along the 

sides of the shoot apical meristem
• Unlike roots and stems, secondary growth in leaves 

is minor or nonexistent
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• The waxy cuticle coating the leaf epidermis reduces 
water loss except where interrupted by stomata

• Stomata, pores in the epidermis, allow exchange of 
CO2 and O2 between the surrounding air and 
photosynthetic cells inside the leaf 

• Each stoma is flanked by two guard cells, which 
regulate its opening and closing to reduce water 
loss
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• The ground tissue in a leaf, called mesophyll, is 
sandwiched between the upper and lower 
epidermis

• The mesophyll of eudicots has two layers:
– Cells of the palisade mesophyll (upper layer) are rich 

in chloroplasts to maximize light capture
– Cells of the spongy mesophyll (lower layer) are 

loosely packed to create air spaces for gas 
exchange
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• The vascular tissue of each leaf is continuous with 
the vascular tissue of the stem

• Veins are the leaf’s vascular bundles and they also 
provide structural support for the leaf

• Leaf veins are enclosed by a protective bundle 
sheath that regulates movement of substances 
between the vascular tissue and the mesophyll
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Figure 35.18
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Animation: Leaf Anatomy
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CONCEPT 35.4: Secondary growth increases 
the diameter of stems and roots in woody 
plants
• Many land plants display secondary growth, the 

growth in thickness produced by lateral meristems
• Secondary growth occurs in gymnosperms and 

many eudicots, but is rare in monocots

89



• Secondary growth consists of the tissues produced 
by the vascular cambium and cork cambium

• The vascular cambium adds secondary xylem 
(wood) toward the interior and secondary phloem 
toward the exterior of the stem

• The cork cambium produces a tough covering to 
protect the stem from water loss and pathogen 
invasion
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• In woody plants, primary and secondary growth 
occur simultaneously
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Figure 35.19
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Animation: Secondary Growth
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The Vascular Cambium and Secondary Vascular 
Tissue
• The vascular cambium is wholly responsible for the 

production of secondary vascular tissue
• In a typical woody stem, the vascular cambium is 

located outside the pith and primary xylem and to 
the inside of the primary phloem and the cortex

• In a typical woody root, the vascular cambium 
forms exterior to the primary xylem and interior to 
the primary phloem and pericycle
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• In cross section, the vascular cambium appears as 
a ring of meristematic cells

• Cell division increases the vascular cambium’s 
circumference and adds secondary xylem to the 
inside and secondary phloem to the outside
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• Elongated stem cells are oriented parallel to the 
axis of the stem or root

• They give rise to tracheids, vessel elements, fibers 
of xylem, sieve-tube elements, companion cells, 
axially oriented parenchyma, and fibers of the 
phloem
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• Shorter stem cells are oriented perpendicular to the 
axis of the stem or root

• They produce vascular rays—radial files of 
parenchyma cells that connect secondary xylem 
and phloem
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• Secondary xylem accumulates as wood and 
consists mainly of tracheids, vessel elements, and 
fibers

• Early wood, formed in the spring in temperate 
regions, has thin cell walls to maximize water 
delivery

• Late wood, formed in the summer, has thick-walled 
cells and contributes more to stem support
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Figure 35.20
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• Tree rings are visible where late and early wood 
meet and can be used to estimate a tree’s age

• Dendrochronology, the analysis of tree ring growth 
patterns, can be used to study past climate change

• Thick rings indicate a year with warm or wet 
growing conditions; thin rings indicate a cold or dry 
year
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Figure 35.21
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• As a tree or woody shrub ages, the older layers of 
secondary xylem, the heartwood, no longer 
transport water and minerals

• The outer layers, known as sapwood, still transport 
materials through the xylem

• Older secondary phloem sloughs off and does not 
accumulate
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Figure 35.22
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Figure 35.23
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The Cork Cambium and the Production of 
Periderm
• Cork cambium gives rise to cork cells that 

accumulate to the exterior of the cork cambium
• Before dying, cork cells deposit waxy suberin in 

their walls, creating a water and gas impermeable 
barrier

• The cork cambium and the tissues it produces form 
a layer of periderm that replaces the epidermis
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• Bark consists of all the tissues external to the 
vascular cambium, including secondary phloem 
and periderm

• Lenticels are pores in the periderm that allow for 
gas exchange between living cells of the stem or 
root and the outside air

106



Figure 35.24
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Evolution of Secondary Growth
• Adding weights to the herbaceous plant 

Arabidopsis thaliana, stimulates secondary growth 
in the stem

• This finding indicates that weight carried by the 
stem activates development leading to wood 
formation
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• The processes of primary and secondary growth 
may have evolved more closely than previously 
thought

• Developmental genes that regulate shoot apical 
meristems in Arabidopsis also regulate vascular 
cambium activity in poplar (Populus) trees
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CONCEPT 35.5: Growth, morphogenesis, and 
cell differentiation produce the plant body 
• Cells form specialized tissues, organs, and 

organisms through the process of development
• Developmental plasticity describes the effect of 

environment on development
– For example, in the aquatic plant Cabomba aquatica, 

different leaves are formed depending on whether 
the shoot apical meristem is submerged
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Figure 35.25
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• Growth, morphogenesis, and cell differentiation are 
the processes involved in the development of 
multicellular organisms
– Growth is an irreversible increase in size
– Morphogenesis is the development of body form and 

cell organization
– Cell differentiation is the process by which cells with 

the same genes become different from each other
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Model Organisms: Revolutionizing the Study of 
Plants
• Arabidopsis is model organism for genetic analysis 

due to its small size, short generation time, prolific 
seed production, and small genome size  

• Arabidopsis was the first plant to have its entire 
genome sequenced; it has 27,000 genes divided 
among five pairs of chromosomes
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• The outward appearance of Arabidopsis varies 
markedly among populations from locations with 
different environmental conditions

• Genome sequencing will provide insight into the 
evolutionary adaptations that allowed Arabidopsis
to occupy such varied environments
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Figure 35.26
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• Arabidopsis is easily transformed with transgenes, 
genes from a different organism that are introduced 
into the genome of another

• CRISPR technology has also been used to “knock 
out” specific genes to learn about their functions

• Researchers aim to determine the blueprint for 
plant development by identifying the function and 
pathway for every gene in Arabidopsis

116



Growth: Cell Division and Cell Expansion
• Cell division in meristems increases the number of 

cells and, therefore, the potential for growth
• Cell elongation is the process directly responsible 

for increase in plant size
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Cell Division 
• New cell walls formed during cytokinesis develop 

from the cell plate that bisects the dividing cell
• The plane of division is typically the shortest path 

required to equally divide the cytoplasm
• Asymmetrical cell division signals a key event in 

development
– For example, guard cell formation follows 

asymmetrical division and a change in the plane of 
cell division
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Figure 35.27
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Cell Expansion
• Animal cells grow by synthesizing protein-rich, 

energetically “expensive” cytoplasm
• About 90% of plant cell expansion is facilitated 

through intake and storage of water in vacuoles
• This allows plants to grow rapidly and economically

– For example, bamboo shoots can grow more than 2 
m per week 
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• The greatest expansion of plant cells is typically 
along the plant’s main axis

• Growth is restricted to the plane perpendicular to 
the orientation of cellulose microfibrils in the cell 
wall
– For example, cells near the root tip may elongate 

more than 20 times their original length without 
increasing in width
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Figure 35.28
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Morphogenesis and Pattern Formation
• Pattern formation is the development of specific 

structures in specific locations
• Two hypotheses explain the fate of plant cells 

during pattern formation
– Lineage-based mechanisms propose that cell fate is 

determined early in development and passed to 
daughter cells

– Position-based mechanisms propose that cell fate is 
determined by final position
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• Plant cell fate has been experimentally 
demonstrated to be dependent on cell position

• In contrast, cell fate in animals is largely 
determined by lineage-dependent mechanisms

• Homeotic (Hox) genes in animals affect the number 
and placement of appendages in embryos
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• A homolog of Hox genes in maize, KNOTTED-1, 
does not affect the number or placement of organs

• Unrelated transcription factors called MADS-box
proteins fulfill this role in plants

• KNOTTED-1 is important in the development of leaf 
shape
– For example, overexpression of KNOTTED-1 causes 

tomato leaves to become “super-compound”
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Figure 35.29
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Gene Expression and the Control of Cell 
Differentiation
• Despite having a common genome, cells can 

synthesize different proteins and diverge in 
structure and function

• Cellular differentiation depends on gene 
expression, but is determined by position

• Positional information is communicated through cell 
interactions
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• Gene activation or inactivation depends on cell-to-
cell communication
– For example, Arabidopsis root epidermis forms root 

hairs or hairless cells depending on the number of 
cortical cells it is touching

– Formation of root hairs is dependent on the 
differential expression of the GLABRA-2 gene
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Figure 35.30
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Shifts in Development: Phase Changes
• Plants develop from a juvenile phase to an adult 

vegetative stage to an adult reproductive stage
• These developmental stages, phase changes, are 

restricted to the shoot apical meristem 
• The most obvious morphological changes occur in 

leaf size and shape

130



Figure 35.31

131



Genetic Control of Flowering
• Flower formation involves a phase change from 

vegetative growth to reproductive growth
• It is triggered by a combination of environmental 

cues and internal signals, such as hormones
• Flower production stops the primary growth of that 

shoot
• The transition to flowering is associated with the 

switching on of flower-inducing genes
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• The order of primordium emergence determines its 
development into a sepal, petal, stamen, or carpel

• Floral organs form four whorls in roughly concentric 
“circles” viewed from above

• Sepals are outermost and form first, followed by 
petals, stamens, and then the innermost carpels
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• Several genes encode transcription factors that 
regulate development of floral pattern

• Positional information determines which genes are 
expressed in a particular floral organ primordium

• A mutation in a flower-inducing gene can cause 
abnormal floral development
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Figure 35.32
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• The ABC hypothesis of flower formation proposes 
that three classes of genes direct the formation of 
the four types of floral organs

• Each class of genes is switched on in two specific 
whorls of the floral meristem
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Figure 35.33
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Figure 35.UN01a
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Figure 35.UN01b
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Figure 35.UN02
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Figure 35.UN03
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Figure 35.UN04
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Figure 35.UN05
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Figure 35.UN06
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