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CONCEPT 21.1: The Human Genome Project 
fostered development of faster, less expensive 
sequencing techniques
• Genomics is the study of whole sets of genes and 

their interactions
• Bioinformatics is the application of computational 

methods to the storage and analysis of biological 
data
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• Officially begun as the Human Genome Project in 
1990, the sequencing of the human genome was 
published in 2006

• The sequenced DNA was pooled from a few 
individuals

• Scientists reviewed the results and agreed on a 
reference genome, a full sequence that best 
represents the genome of a species
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• The goal in mapping any genome is to determine 
the complete nucleotide sequence of each 
chromosome

• The human genome was completed using 
sequencing machines and the dideoxy chain 
termination method

• Two approaches complemented each other in 
obtaining the complete sequence
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• The initial approach ordered each fragment based 
on earlier mapping of the human genome

• Then, molecular biologist J. Craig Venter set up a 
company to sequence the entire genome using an 
alternative whole-genome shotgun approach

• This used cloning and sequencing of fragments of 
randomly cut DNA followed by assembly into a 
single continuous sequence
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• The whole-genome shotgun approach is widely 
used today

• A major thrust of the Human Genome Project was 
the development of technologies for faster 
sequencing

• These “next-generation” techniques do not require 
a cloning step 
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• These techniques have also facilitated a 
metagenomics approach, in which DNA from a 
group of species in an environmental sample is 
sequenced

• Making sense of massive amounts of data from 
many genome sequences has necessitated new 
analytical approaches
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CONCEPT 21.2: Scientists use bioinformatics to 
analyze genomes and their functions
• The Human Genome Project established 

databases and refined analytical software to make 
data available on the Internet
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Centralized Resources for Analyzing Genome 
Sequences
• Bioinformatics resources are provided by a number 

of sources
– The National Library of Medicine (NLM) and the 

National Institutes of Health (NIH) maintain the 
National Center for Biotechnology Information 
(NCBI)

– European Molecular Biology Laboratory
– DNA Data Bank of Japan
– BGI in Shenzhen, China
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• The NCBI database of sequences is called 
GenBank

• As of August 2019, it included the sequences of 
214 million fragments of genomic DNA, totaling 366 
billion base pairs

• A widely used software program on the NCBI 
website is called BLAST (Basic Local Alignment 
Search Tool)

• Users of this tool can compare a DNA sequence 
with every sequence in GenBank
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• Another program allows comparison of protein 
sequences

• A third program can search any protein sequence 
for conserved (commo) stretches of amino acids 
(domains) for which a function is known or 
suspected

• It can show a three-dimensional model of the 
domain alongside other relevant information
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• Rutgers University and the University of California, 
San Diego, maintain a world-wide database of all 
three-dimensional proteins structures that have 
been determined

• It is called the Protein Data Bank
• There is a vast array of resources available for 

researchers anywhere in the world to use free of 
charge
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Identifying Protein-Coding Genes and 
Understanding Their Functions
• Using available DNA sequences, geneticists can 

study genes directly 
• The identification of protein-coding genes within 

DNA sequences in a database is called gene 
annotation
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• Gene annotation uses three lines of evidence to 
identify a gene

• First computers search for patterns that indicate the 
presence of genes

• This includes translational start and stop signals, 
RNA splicing sites and other signs, such as 
promoter sequences

• The software also looks for short sequences that 
specify known mRNAs
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• The second step is to obtain clues about the 
identities and functions

• Software is used to compare the sequence of a 
protein to the products of known genes from other 
organisms

• The final step is to use RNA-seq or some other 
method to show that the relevant RNA is actually 
expressed from the proposed gene
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Understanding Genes and Gene Expression at 
the Systems Level
• Genomics is a rich source of new insights into 

questions about genome organization, regulation of 
gene expression, embryonic development, and 
evolution

• The ENCODE (Encyclopedia of DNA Elements) 
project ran from 2003 to 2012

• The aim was to learn about the functionally 
important elements in the human genome
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• Besides working to identify enhancers and 
promoters, investigators also extensively 
characterized histone and DNA modifications and 
chromatin structure

• This project allows comparison of results from 
different projects, yielding a richer picture of the 
whole genome
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• About 75% of the genome is transcribed at some 
point in at least one cell type studied 

• Biochemical functions have been assigned to DNA 
elements making up at least 80% of the genome

• The ENCODE project analyzed cells in culture, so 
its potential for clinical applications was limited
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• A related project called the Roadmap Epigenomics
Project set out to characterize the epigenetic 
features of the genome (the epigenome)

• A useful finding was that the original tissue in which 
a cancer arose can be identified in a secondary 
tumor based on its epigenomic features
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Systems Biology
• Proteomics is an approach to studying large sets 

of proteins and their properties
• A proteome is the entire set of proteins expressed 

by a cell or group of cells
• Biologists have begun to compile catalogs of genes 

and proteins and have begun to focus on their 
functional integration in biological systems

• This approach is called systems biology
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• Researchers working on the yeast Saccharomyces 
cerevisiae used sophisticated techniques to disable 
pairs of genes one pair at a time, creating double 
mutants

• Computer software then mapped genes to produce 
a network-like “functional map” of their interactions

• The systems biology approach is possible because 
of advances in bioinformatics
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Application of Systems Biology to Medicine
• The Cancer Genome Atlas project culminated in 

2018 with publications called the Pan-Cancer Atlas
• In this project, many interacting genes and gene 

products were analyzed together as a group
• High-throughput techniques are increasingly being 

applied to the problem of cancer
• Overall, the Pan-Cancer Atlas contributed 

significantly to understanding how, where, and why 
tumors arise
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• DNA microarrays on glass or silicon chips and, 
increasingly, RNA-seq are used to analyze gene 
expression patterns in patients with cancers or 
other diseases

• Analyzing which genes are overexpressed or 
underexpressed in a cancer allows physicians to 
tailor the treatment to unique genetic makeup of the 
patient and the cancer
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CONCEPT 21.3: Genomes vary in size, number 
of genes, and gene density
• The sequences of thousands of genomes have 

been completed 
• Tens of thousands of genomes are either in 

progress or are considered permanent drafts
• Among the sequences in progress are roughly 

22,000 metagenomes
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Genome Size
• Genomes of most bacteria and archaea range from 

1 to 6 million base pairs (Mb)
• Eukaryotic genomes tend to be larger
• Most plants and animals have genomes greater 

than 100 Mb; humans have 3,000 Mb
• Within each domain, there is no systematic 

relationship between genome size and phenotype
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Number of Genes
• Free-living bacteria and archaea have 1,500 to 

7,500 genes
• Unicellular fungi have about 5,000 genes and 

multicellular eukaryotes up to at least 40,000 genes
• Number of genes is not correlated to genome size
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• It is estimated that the nematode C. elegans has 
100 Mb and 20,100 genes, while Drosophila 
melanogaster has 165 Mb and 14,000 genes

• Researchers predicted the human genome would 
contain about 50,000 to 100,000 genes; however, 
the number is around 21,300

• Vertebrate genomes can produce more than one 
polypeptide per gene because of alternative 
splicing of RNA transcripts
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Gene Density and Noncoding DNA
• Humans and other mammals have the lowest gene 

density, or number of genes in a given length of 
DNA

• Multicellular eukaryotes have many introns within 
genes and a large amount of noncoding DNA 
between genes 
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CONCEPT 21.4: Multicellular eukaryotes have a 
lot of noncoding DNA and many multigene 
families
• Sequencing of the human genome revealed that 

98.5% does not code for proteins, rRNAs, or tRNAs
• Gene regulatory sequences and introns account for 

5% and 20%, respectively, of the human genome
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• Noncoding DNA, found between genes, includes:
– Pseudogenes, former genes that have accumulated 

mutations and are nonfunctional
– Repetitive DNA, present in multiple copies in the 

genome
• A high level of sequence conservation in some 

noncoding DNA among humans, rats, and mice 
suggests that these regions have important 
functions
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Transposable Elements and Related Sequences
• Prokaryotes and eukaryotes have stretches of DNA 

that can move from one location to another within 
the genome, called transposable elements

• About 75% of human repetitive DNA is made up of 
transposable elements and the sequences related 
to them

• The first evidence of these mobile elements came 
from Barbara McClintock’s breeding experiments 
with Indian corn (maize)
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Movement of Transposons and 
Retrotransposons
• Eukaryotic transposable elements are of two types

– Transposons move by means of a DNA 
intermediate and require a transposase enzyme

– Retrotransposons move by means of an RNA 
intermediate using a reverse transcriptase
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Sequences Related to Transposable Elements
• Multiple copies of transposable elements and 

related sequences are scattered throughout 
eukaryotic genomes

• In humans and other primates, a large portion of 
transposable element–related DNA consists of a 
family of similar sequences called Alu elements

• Many Alu elements are transcribed into RNA 
molecules; some are thought to help regulate gene 
expression
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• The human genome also contains many 
sequences of a type of retrotransposon called 
LINE-1 (L1)

• L1 sequences have a low rate of transposition and 
may affect chromatin structure

• Transposable elements are included in the 
“noncoding” DNA category, along with other 
repetitive sequences
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Other Repetitive DNA, Including Simple 
Sequence DNA
• Repetitive DNA accounts for about 14% of the 

human genome
• About 5–6% of the human genome consists of 

duplication of long sequences of DNA from one 
location to another

• In contrast, simple sequence DNA contains many 
copies of tandemly repeated short sequences
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• A series of repeating units of 2 to 5 nucleotides is 
called a short tandem repeat (STR)

• The repeat number for STRs can vary among sites 
(within a genome) or individuals 

• Simple sequence DNA makes up 3% of the human 
genome

• It is common in centromeres and telomeres, where 
it probably plays structural roles in the chromosome
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Genes and Multigene Families
• Many eukaryotic genes are present in one copy per 

haploid set of chromosomes
• The rest of the genes occur in multigene families, 

collections of two or more identical or very similar 
genes

• Some multigene families consist of identical DNA 
sequences, usually clustered tandemly, such as 
those that code for rRNA products
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• The classic examples of multigene families of 
nonidentical genes are two related families of 
genes that encode globins

• α-globins and β-globins are polypeptides of 
hemoglobin coded by genes on different human 
chromosomes and are expressed at different times 
in development
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CONCEPT 21.5: Duplication, rearrangement, 
and mutation of DNA contribute to genome 
evolution
• The basis of change at the genomic level is 

mutation, which underlies much of genome 
evolution

• The earliest forms of life likely had only those 
genes necessary for survival and reproduction

• The size of genomes has increased over 
evolutionary time, with the extra genetic material 
providing raw material for gene diversification
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Duplication of Entire Chromosome Sets
• Accidents in meiosis can lead to one or more extra 

sets of chromosomes, a condition known as 
polyploidy

• The genes in one or more of the extra sets can 
diverge by accumulating mutations

• These variations may persist if the organism 
carrying them survives and reproduces

• In this way, genes with novel functions can evolve
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Alterations of Chromosome Structure
• Humans have 23 pairs of chromosomes, while 

chimpanzees have 24 pairs
• Following the divergence of humans and 

chimpanzees from a common ancestor, two 
ancestral chromosomes fused in the human line

• Large blocks of genes on human chromosome 16 
are found on four mouse chromosomes

• This indicates that the genes in each block stayed 
together in both the human and mouse lineages
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• Comparative analysis between chromosomes of 
humans and six other mammalian species paints a 
hypothetical chromosomal evolutionary history

• The rate of duplications and inversions seems to 
have accelerated about 100 million years ago

• This coincides with when large dinosaurs went 
extinct and mammals diversified

• Chromosomal rearrangements are thought to 
contribute to the generation of new species
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Duplication and Divergence of Gene-Sized 
Regions of DNA
• Unequal crossing over during prophase I of meiosis 

can result in one chromosome with a deletion and 
another with a duplication of a particular region

• Transposable elements can provide sites for 
crossover between nonsister chromatids

• Also, slippage can occur during DNA replication so 
that a part of the template is either skipped, or 
replicated twice
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Evolution of Genes with Related Functions: The 
Human Globin Genes
• Evidence suggests that the genes encoding the 

globin proteins evolved from one common 
ancestral globin gene, which duplicated and 
diverged about 450–500 million years ago

• After the duplication events, differences between 
the genes in the globin family arose from the 
accumulation of mutations
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• Subsequent duplications of these genes and 
random mutations gave rise to the present globin 
genes, which code for oxygen-binding proteins

• The similarity in the amino acid sequences of the 
various globin proteins supports this model of gene 
duplication and mutation
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Evolution of Genes with Novel Functions
• One copy of a duplicated gene can undergo 

alterations that lead to a completely new function 
for the protein product

• For example,  the lysozyme gene was duplicated 
and evolved into the gene that encodes 
α-lactalbumin in mammals

• Lysozyme is an enzyme that helps protect animals 
against bacterial infection

• α-lactalbumin is a nonenzymatic protein that plays 
a role in milk production in mammals
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Rearrangements of Parts of Genes: Exon 
Duplication and Exon Shuffling
• Errors in meiosis can result in an exon being 

duplicated on one chromosome and deleted from 
the homologous chromosome

• In exon shuffling, errors in meiotic recombination 
lead to some mixing and matching of exons, either 
within a gene or between two nonallelic genes

• The current version of the gene for tissue 
plasminogen activator (TPA) is thought to have 
arisen by several instances of exon shuffling and 
subsequent duplication
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How Transposable Elements Contribute to 
Genome Evolution
• Multiple copies of similar transposable elements 

facilitate recombination, or crossing over, between 
different chromosomes

• Insertion of transposable elements within a protein-
coding sequence may block protein production

• Insertion of transposable elements within a 
regulatory sequence may increase or decrease 
protein production
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• Transposable elements may carry a gene or groups 
of genes to a new position

• Transposable elements may also create new sites 
for alternative splicing in an RNA transcript

• In all cases, changes are usually detrimental but 
may on occasion prove advantageous to an 
organism
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CONCEPT 21.6: Comparing genome sequences 
provides clues to evolution and development
• Comparisons of genome sequences from different 

species reveal much about the evolutionary history 
of life

• Comparative studies of genetic programs that affect 
embryonic development are beginning to clarify the 
mechanisms that generated the diversity of life-
forms present today

68



Comparing Genomes
• Genome comparisons of closely related species 

help shed light on recent evolutionary events 
• Comparing genomes of very distantly related 

species helps us understand ancient evolutionary 
history

• Relationships among species can be represented 
by a tree-shaped diagram 
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Comparing Distantly Related Species
• Highly conserved genes have changed very little 

over time
• These help clarify relationships among species that 

diverged from each other long ago
• Bacteria, archaea, and eukaryotes diverged from 

each other between 2 and 4 billion years ago
• Very ancient genes can still be surprisingly similar 

in disparate species
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Comparing Closely Related Species
• Genomes of closely related species are likely to be 

organized similarly
• For example, comparison of the human genome 

with that of other mammals gives us clues about 
what it takes to make a mammal

• Analysis of the human and chimpanzee genomes 
reveals some general differences that underlie the 
differences between the two organisms
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• Human and chimpanzee genomes differ by 1.2% at 
single base pairs and by 2.7% because of 
insertions and deletions

• Sequencing of the bonobo genome in 2012 
revealed that in some regions there is greater 
similarity between human and bonobo or 
chimpanzee sequences than between chimpanzee 
and bonobo

• We don’t know how the genetic differences 
revealed by genome sequencing account for the 
distinct characteristics of each species
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• A number of genes are apparently evolving faster in 
the human than in the chimpanzee or mouse

• Among them are genes involved in defense against 
malaria and tuberculosis and one that regulates 
brain size

• The FOXP2 gene shows evidence of rapid change 
in the human lineage compared to other primates

• The gene may be related to human speech; there 
are two amino acids found only in the human 
protein sequence
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• In 2014, a high-quality sequence of the 
Neanderthal (Homo neanderthalensis) genome 
was achieved

• Shortly after that, the DNA of the Denisovan
member of the species Homo was also sequenced

• DNA sequences from both species encode the 
same two amino acids (in the FOXP2 gene) so 
these are not human-specific

• Further research shows no evidence for selection 
for these two amino acids in the human lineage 
during the time frame relevant to language 
acquisition
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• However, several lines of evidence suggest that 
FOXP2 regulates genes that function in 
vocalization in vertebrates

• Mutation in this gene leads to severe speech and 
language impairment in humans

• It is expressed in the brains of zebra finches and 
canaries at the time when they are learning their 
songs

• Mice with FOXP2 knocked out have malformed 
brains and fail to emit normal ultrasonic 
vocalizations
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• When FOXP2 knockout mice have the human form 
of the gene introduced, the mice are generally 
healthy, and can vocalize

• However, their vocalizations are subtly different 
from normal mice

• The FOXP2 story is an excellent example of how 
different approaches can complement each other in 
leading to understanding of biological phenomena
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Comparing Genomes Within a Species
• As a species, humans have only existed for about 

200,000 years and have low within-species genetic 
variation

• Variation within humans is due to single nucleotide 
polymorphisms (SNPs), inversions, deletions, and 
duplications

• Several million SNPs have been identified in the 
human genome, stored in databases around the 
world
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• Most surprising is the large number of copy-number 
variants

• These variations are likely to play a role in complex 
diseases and disorders

• Copy-number variants, SNPs, and other 
polymorphisms are useful genetic markers for 
studying human evolution

• African genomes have higher genetic diversity than 
other genomes, suggesting these populations have 
been evolving longer than non-African populations
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Widespread Conservation of Developmental 
Genes Among Animals
• Evolutionary developmental biology, or evo-devo, 

compares developmental processes of different 
multicellular organisms

• Genomic information shows that minor differences 
in gene sequence or regulation can result in striking 
differences in form
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• Homeotic genes in Drosophila melanogaster
encode genes that specify identity of body 
segments of the fly

• All of these genes contain a 180-nucleotide 
sequence called a homeobox

• An identical or very similar nucleotide sequence 
has been discovered in the homeotic genes of both 
vertebrates and invertebrates
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• Related homeobox sequences have been found in 
regulatory genes of yeasts and plants 

• Homeotic genes in animals are called Hox genes
• The homeodomain is the part of the protein that 

binds to the DNA, where the protein functions as a 
transcription factor

• In addition to homeotic genes, many other 
developmental genes are highly conserved from 
species to species
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• Sometimes small changes in regulatory sequences 
of certain genes lead to major changes in body 
form

• For example, variation in Hox gene expression 
controls variation in leg-bearing segments of 
crustaceans and insects 

• In other cases, genes with conserved sequences 
play different roles in different species
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