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CONCEPT 16.1: DNA is the genetic material
• Early in the 20th century, the identification of the 

molecules of inheritance posed a major challenge 
to biologists
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The Search for the Genetic Material: Scientific 
Inquiry
• When T. H. Morgan’s group showed that genes are 

located on chromosomes, the two components of 
chromosomes—DNA and protein—became 
candidates for the genetic material

• The role of DNA in heredity was first discovered
by studying bacteria and the viruses that
infect them
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Evidence That DNA Can Transform Bacteria
• The discovery of the genetic role of DNA began 

with research by Frederick Griffith in 1928
• Griffith worked with two strains of a bacterium, one 

pathogenic and one harmless
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• When he mixed heat-killed remains of the 
pathogenic strain with living cells of the harmless 
strain, some living cells became pathogenic

• He called this phenomenon transformation, now 
defined as a change in genotype and phenotype 
due to assimilation of foreign DNA

7



Figure 16.2

8



• Later work by Oswald Avery, Maclyn McCarty, and 
Colin MacLeod identified the transforming 
substance as DNA

• Many biologists remained skeptical, mainly 
because little was known about DNA
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Evidence That Viral DNA Can Program Cells
• More evidence for DNA as the genetic material 

came from studies of viruses that infect bacteria
• Such viruses are called bacteriophages (or 

phages)
• A virus is DNA (sometimes RNA) enclosed by a 

protective coat, often simply protein
• Phages have been widely used as tools by 

researchers in molecular genetics
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Animation: Phage T2 Reproductive Cycle
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• In 1952, Alfred Hershey and Martha Chase showed 
that DNA is the genetic material of a phage known 
as T2

• They designed an experiment showing that only 
one of the two components of T2 (DNA or protein) 
enters an E. coli cell during infection

• They concluded that the injected DNA of the phage 
provides the genetic information
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Animation: The Hershey-Chase Experiment
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Additional Evidence That DNA Is the Genetic 
Material
• DNA is a polymer of nucleotides, each consisting of 

a nitrogenous base, a sugar, and a phosphate 
group

• The nitrogenous bases can be adenine (A), 
thymine (T), guanine (G), or cytosine (C) 

• In 1950, Erwin Chargaff reported that DNA 
composition varies from one species to the next

• This evidence of molecular diversity among 
organisms made DNA a more credible candidate 
for the genetic material
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• Two findings became known as Chargaff’s rules
– The base composition of DNA varies between 

species
– In any species the number of A and T bases is equal 

and the number of G and C bases is equal
• The basis for these rules was not understood until 

the discovery of the double helix
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Animation: DNA and RNA Structure
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Building a Structural Model of DNA
• After DNA was accepted as the genetic material, 

the challenge was to determine how its structure 
accounts for its role in inheritance

• Maurice Wilkins and Rosalind Franklin used a 
technique called X-ray crystallography to study 
molecular structure

• Franklin produced a picture of the DNA molecule 
using this technique
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• Franklin’s X-ray crystallographic images of DNA 
allowed James Watson to deduce that DNA was 
helical

• The X-ray images also enabled Watson to deduce 
the width of the helix and the spacing of the 
nitrogenous bases

• The pattern in the photo suggested that the DNA 
molecule was made up of two strands, forming a 
double helix
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• Watson and Crick built models of a double helix to 
conform to the X-rays and chemistry of DNA

• Franklin had concluded that there were two outer 
sugar-phosphate backbones, with the nitrogenous 
bases paired in the molecule’s interior

• Watson built a model in which the backbones were 
antiparallel (their subunits run in opposite 
directions) 
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Animation: DNA Double Helix
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Video: Stick Model of DNA
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Video: Surface Model of DNA
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• At first, Watson and Crick thought the bases paired 
like with like (A with A, and so on), but such pairings 
did not result in a uniform width 

• Instead, pairing a purine (A or G) with a pyrimidine 
(C or T) resulted in a uniform width consistent with 
the X-ray data

28



Figure 16.8

29



• Watson and Crick reasoned that the pairing was 
more specific, dictated by the base structures

• They determined that adenine (A) paired only with 
thymine (T), and guanine (G) paired only with 
cytosine (C)

• The Watson-Crick model explains Chargaff’s rules: 
in any organism the amount of A = T, and the 
amount of G = C
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CONCEPT 16.2: Many proteins work together in 
DNA replication and repair
• Resemblance of offspring to parents relies on 

accurate replication of DNA prior to meiosis and its 
transmission to the next generation

• Replication prior to mitosis ensures the faithful 
transmission of genetic information from a parent 
cell to the two daughter cells

• Watson and Crick noted that the specific base 
pairing suggested a possible copying mechanism 
for genetic material

• The copying of DNA is called DNA replication

32



The Basic Principle: Base Pairing to a Template 
Strand
• Since the two strands of DNA are complementary, 

each strand acts as a template for building a new 
strand in replication

• This yields two exact replicas of the “parental” 
molecule
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• Watson and Crick’s semiconservative model of 
replication predicts that when a double helix 
replicates, each daughter molecule will have one 
old strand (derived or “conserved” from the parent 
molecule) and one newly made strand

• Competing models were the conservative model 
(the two parent strands rejoin) and the dispersive 
model (each strand is a mix of old and new)
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• Experiments by Matthew Meselson and Franklin 
Stahl supported the semiconservative model 
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DNA Replication: A Closer Look
• The copying of DNA is remarkable in its speed and 

accuracy
• More than a dozen enzymes and other proteins 

participate in DNA replication
• Replication in bacteria is best understood, but 

evidence suggests that the replication process in 
eukaryotes and prokaryotes is fundamentally 
similar
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Getting Started
• Replication begins at particular sites called origins 

of replication, where the two DNA strands are 
separated, opening up a replication “bubble”

• A eukaryotic chromosome may have hundreds or 
even thousands of origins of replication

• Replication proceeds in both directions from each 
origin, until the entire molecule is copied
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Animation: Origins of Replication
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• At the end of each replication bubble is a 
replication fork, a Y-shaped region where parental 
DNA strands are being unwound

• Helicases are enzymes that untwist the double 
helix at the replication forks

• Single-strand binding proteins bind to and 
stabilize single-stranded DNA

• Topoisomerase relieves the strain of twisting of 
the double helix by breaking, swiveling, and 
rejoining DNA strands
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Synthesizing a New D N A Strand
• D N A polymerases require a primer to which they 

can add nucleotides
• The initial nucleotide chain is a short R N A primer
• This is synthesized by the enzyme primase
• The completed primer is five to ten nucleotides long
• The new D N A strand will start from the 3′ end of the 

R N A primer
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• Enzymes called DNA polymerases catalyze the 
synthesis of new DNA at a replication fork

• Most DNA polymerases require a primer and a DNA 
template strand

• The rate of elongation is about 500 nucleotides per 
second in bacteria and 50 per second in human 
cells
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• Each nucleotide that is added to a growing DNA 
strand is a nucleoside triphosphate

• dATP supplies adenine to DNA and is similar to the 
ATP of energy metabolism

• The difference is in their sugars: dATP has 
deoxyribose while ATP has ribose

• As each monomer joins the DNA strand, via a 
dehydration reaction, it loses two phosphate groups 
as a molecule of pyrophosphate
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Antiparallel Elongation
• The antiparallel structure of the double helix affects 

replication
• DNA polymerases add nucleotides only to the free 

3′ end of a growing strand; therefore, a new DNA 
strand can elongate only in the 5′ → 3′ direction
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• Along one template strand of DNA, the DNA 
polymerase synthesizes a leading strand 
continuously, moving toward the replication fork
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BioFlix® Animation: Synthesis of the Leading 
Strand
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• To elongate the other new strand, called the 
lagging strand, DNA polymerase must work in the 
direction away from the replication fork

• The lagging strand is synthesized as a series of 
segments called Okazaki fragments, which are 
joined together by DNA ligase
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BioFlix® Animation: Synthesis of the Lagging 
Strand
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Animation: DNA Replication: An Overview
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Animation: DNA Replication Review
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The DNA Replication Complex
• The proteins that participate in DNA replication form 

a large complex, a “DNA replication machine”
• The DNA replication machine may be stationary 

during the replication process
• Recent studies support a model in which DNA 

polymerase molecules “reel in” parental DNA and 
extrude newly made daughter DNA molecules

• The exact mechanism is not yet resolved
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Proofreading and Repairing DNA
• DNA polymerases proofread newly made DNA, 

replacing any incorrect nucleotides
• In mismatch repair of DNA, repair enzymes 

replace incorrectly paired nucleotides that have 
evaded the proofreading process
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• DNA can be damaged by exposure to harmful 
chemical or physical agents such as cigarette 
smoke and X-rays; it can also undergo 
spontaneous changes

• In nucleotide excision repair, a nuclease cuts out 
and replaces damaged stretches of DNA
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Evolutionary Significance of Altered DNA 
Nucleotides
• The error rate after proofreading and repair is low 

but not zero
• Sequence changes may become permanent and 

can be passed on to the next generation
• These changes (mutations) are the source of the 

genetic variation upon which natural selection 
operates and are ultimately responsible for the 
appearance of new species
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Replicating the Ends of DNA Molecules
• For linear DNA, the usual replication machinery 

cannot complete the 5′ ends of daughter DNA 
strands

• There is no 3′ end of a preexisting polynucleotide 
for DNA polymerase to add on to

• Thus, repeated rounds of replication produce 
shorter DNA molecules with uneven ends

• This is not a problem for prokaryotes, most of which 
have circular chromosomes
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• Eukaryotic chromosomal DNA molecules have 
special nucleotide sequences at their ends called 
telomeres

• Telomeres do not prevent the shortening of DNA 
molecules, but they do postpone the erosion of 
genes near the ends of DNA molecules

• It has been proposed that the shortening of 
telomeres is connected to aging
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• If chromosomes of germ cells became shorter in 
every cell cycle, essential genes would eventually 
be missing from the gametes they produce

• An enzyme called telomerase catalyzes the 
lengthening of telomeres in germ cells
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• The shortening of telomeres might protect cells 
from cancerous growth by limiting the number of 
cell divisions

• There is evidence of telomerase activity in cancer 
cells, which may allow cancer cells to persist

71



CONCEPT 16.3: A chromosome consists of a 
DNA molecule packed together with proteins
• The bacterial chromosome is a double-stranded, 

circular DNA molecule associated with a small 
amount of protein

• Eukaryotic chromosomes have linear DNA 
molecules associated with a large amount
of protein

• In a bacterium, the DNA is “supercoiled” and found 
in a region of the cell called the nucleoid
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• In the eukaryotic cell, DNA is precisely combined 
with proteins in a complex called chromatin

• Chromosomes fit into the nucleus through an 
elaborate, multilevel system of packing

• Proteins called histones are responsible for the 
main level of DNA packing in interphase chromatin
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• In a 10-nm chromatin fiber, the unfolded chromatin 
resembles beads on a string, with each “bead” 
being a nucleosome

• A nucleosome is composed of DNA wound twice 
around a core of eight histones, two each of the 
four main histone types

• The amino end of each histone (the histone tail) 
extends outward from the nucleosome and is 
involved in regulation of gene expression
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Animation: DNA Packing
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• Most chromatin is loosely packed in the nucleus 
during interphase and condenses prior to mitosis

• Loosely packed chromatin is called euchromatin
• During interphase a few regions of chromatin 

(centromeres and telomeres) are highly condensed 
into heterochromatin

• Dense packing of the heterochromatin makes it 
difficult for the cell to express genetic information 
coded in these regions
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• Interphase chromosomes occupy specific restricted 
regions in the nucleus, and the fibers of different 
chromosomes do not become entangled

• Chromatin undergoes changes in packing during 
the cell cycle

• As the cell prepares for mitosis, the chromatin is 
organized into loops and coils, eventually 
condensing into short, thick metaphase 
chromosomes
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CONCEPT 16.3: A chromosome consists of a 
DNA molecule packed together with proteins
• Histones can undergo chemical modifications that 

result in changes in chromatin condensation
• These changes can also have multiple effects on 

gene expression
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