TWELFTH EDITION

CAMPBELL BIOLOGGY urry · cain · wasserman minorsky · orr

Chapter 4

Carbon and the Molecular Diversity of Life

Lecture Presentations by Nicole Tunbridge and Kathleen Fitzpatrick

What makes carbon the basis for all biological molecules?

Dopamine, the molecule shown here, promotes mother-infant bonding.

CONCEPT 4.1: Organic chemistry is key to the origin of life

- Organic chemistry is the study of compounds that contain carbon, regardless of origin
- Organic compounds range from simple molecules to colossal ones

Organic Molecules and the Origin of Life on Earth

- Stanley Miller's classic experiment demonstrated the abiotic synthesis of organic compounds
- Experiments support the idea that abiotic synthesis of organic compounds, perhaps near volcanoes, could have been a stage in the origin of life

- The overall percentages of the major elements of life—C, H, O, N, S, and P—are quite uniform from one organism to another
- Because carbon can form four bonds, these building blocks can be used to make an inexhaustible variety of organic molecules
- The great diversity of organisms on the planet is due to the versatility of carbon

CONCEPT 4.2: Carbon atoms can form diverse molecules by bonding to four other atoms

- Electron configuration is the key to an atom's chemical characteristics
- Electron configuration determines the kinds and number of bonds an atom will form with other atoms

The Formation of Bonds with Carbon

- With four valence electrons, carbon can form four covalent bonds with a variety of atoms
- This enables carbon to form large, complex molecules
- In molecules with multiple carbons, each carbon bonded to four other atoms has a tetrahedral shape
- However, when two carbon atoms are joined by a double bond, the atoms joined to the carbons are in the same plane as the carbons

Molecule and Molecular Shape	Molecular Formula	Structural Formula	Ball-and-Stick Model (molecular shape in pink)	Space-Filling Model
(a) Methane	CH ₄	H H—C—H H		0
(b) Ethane	C₂H ₆	H H H—C—C—H H H		
(c) Ethene (ethylene)	C₂H₄	H H C=C H		

 The number of unpaired electrons in the valence shell of an atom is generally equal to its valence, the number of covalent bonds it can form

	Hydrogen	Oxygen	Nitrogen	Carbon
Lewis dot structure showing existing valence electrons	H·		٠Ņ٠	٠Ċ٠
Electron distribution diagram with red circles showing electrons needed to fill the valence shell	H			
Number of electrons needed to fill the valence shell	1	2	3	4
Valence: Number of bonds the element can form	1	2	3	4

- The electron configuration of carbon gives it covalent compatibility with many different elements
- The most frequent bonding partners of carbon are hydrogen, oxygen, and nitrogen

Molecular Diversity Arising from Variation in Carbon Skeletons

- Carbon atoms can partner with atoms other than hydrogen, such as the following:
 - Carbon dioxide: CO₂

$$O = C = O$$

- Urea: $CO(NH_2)_2$

– Carbon atoms can also be linked into chains as shown for C_3H_8

- Carbon chains form the skeletons of most organic molecules
- Carbon chains vary in length and shape

Animation: Diversity of Carbon-Based Molecules

Hydrocarbons

- Hydrocarbons are organic molecules consisting of only carbon and hydrogen
- Many organic molecules, such as fats, have hydrocarbon components
- Hydrocarbons can undergo reactions that release a large amount of energy

(a) Part of a human adipose cell (b) A fat molecule

Isomers

- Isomers are compounds with the same molecular formula but different structures and properties
 - Structural isomers have different covalent arrangements of their atoms
 - Cis-trans isomers (also called geometric isomers) have the same covalent bonds but differ in their spatial arrangements
 - Enantiomers are isomers that are mirror images of each other

(b) Cis-trans isomers (also known as geometric isomers)

cis isomer: The two Xs are on the same side.

trans isomer: The two Xs are on opposite sides.

Animation: Isomers

- Enantiomers are important in the pharmaceutical industry
- Two enantiomers of a drug may have different effects
- Often only one enantiomer is biologically active
- Differing effects of enantiomers demonstrate that organisms are sensitive to even subtle variations in molecules

Drug	Effects	Effective Enantiomer	Ineffective Enantiomer
lbuprofen	Reduces inflammation and pain	S-lbuprofen	R-lbuprofen
Albuterol	Relaxes bronchial (airway) muscles, improving airflow in asthma patients	R-Albuterol	S-Albuterol

CONCEPT 4.3: A few chemical groups are key to molecular function

- Distinctive properties of organic molecules depend on the carbon skeleton and the chemical groups attached to it
- These groups help give each molecule its unique properties

The Chemical Groups Most Important in the Processes of Life

- Estradiol and testosterone are both steroids with a common carbon skeleton, in the form of four fused rings
- These sex hormones differ only in the chemical groups attached to the rings of the carbon skeleton

- Functional groups are the components of organic molecules that are most commonly involved in chemical reactions
- The number and arrangement of functional groups give each molecule its unique properties

- The seven functional groups that are most important in the chemistry of life are the following:
 - Hydroxyl group
 - Carbonyl group
 - Carboxyl group
 - Amino group
 - Sulfhydryl group
 - Phosphate group
 - Methyl group

Chemical Group	Compound Name	Examples
Hydroxyl group (—OH) ————————————————————————————————————	Alcohol	нн H—C—C—OH Ethanol нн
Carbonyl group ($>C = 0$)	Ketone Aldehyde	HOH HHO H-C-C-HHC-C-C HHHHH Acetone Propanal
Carboxyl group (–COOH)	Carboxylic acid, or organic acid	$\begin{array}{c} H \\ H \\ -C \\ H \\ -C \\ -C \\ -H \\ -C \\ -H \\ -C \\ -C$
Amino group (-NH ₂)	Amine	$\begin{array}{c} \bullet & H \\ \bullet & -\bullet \\ H \bullet & H \end{array} + H^{+} \rightleftharpoons \begin{array}{c} H \\ + & H^{+} \end{array} = \begin{array}{c} H \\ - + N - H \\ H \\ H \end{array}$ $\begin{array}{c} H \\ H \\ H \\ H \\ H \end{array}$ $\begin{array}{c} H \\ H $
Sulfhydryl group (- SH)	Thiol	о _с _он н−с–сн₂–sн Cysteine н н
Phosphate group ($-OPO_3^{2-}$)	Organic phosphate	ОН ОН Н 0 H − C − C − C − O − P − O − H H H 0 − − Glycerol phosphate
Methyl group (–CH ₃)	Methylated compound	NH ₂ NCCCH ₃ 5-Methylcytosine

Animation: Functional Groups

ATP: An Important Source of Energy for Cellular Processes

- An important organic phosphate is adenosine triphosphate (ATP)
- ATP consists of an organic molecule called adenosine attached to a string of three phosphate groups
- ATP stores the potential to react with water
- This reaction releases energy that can be used by the cell

The Chemical Elements of Life: A Review

- The versatility of carbon makes possible the great diversity of organic molecules
- Variation at the molecular level lies at the foundation of all biological diversity on our planet

Product Compound	Molecular Formula	Molar Ratio (Relative to Glycine)
Glycine	$C_2H_5NO_2$	1.0
Serine	C ₃ H ₇ NO ₃	3.0 × 10 ^{−2}
Methionine	$C_5H_{11}NO_2S$	1.8 ×10 ^{−3}
Alanine	C ₃ H ₇ NO ₂	1.1

Data from E. T. Parker et al., Primordial synthesis of amines and amino acids in a 1958 Miller H₂S-rich spark discharge experiment, *Proceedings of the National Academy of Sciences USA* 108:5526-5531 (2011). www.pnas.org/cgi/doi/10.1073/ pnas.1019191108.

114March 24, 1958 Run# 22 CH4 25.8 CO2 8.7 H25 10.0 NH3 250 (3.5me contette) 300 ml H2 0 Started spark at 5:30 P.M. Monday March 24, 1958 after a few minutes there was gellawing g 7 B roln for no green.

О ОН Н Н Н \\ A | B | C | | D C - C - C - C - C - H / | | | | | H H H H H

L-dopa

D-dopa

